
"0462 655 SPECIFICRTION TECHNOLOGY GUIDELINESMU BOEING AEROSPACE v/1
CO KENT WA 0 R RODLENAN ET AL. AUG 95 NG-TR-S5-129
F31602-64-C-N73

UNCLASSIFIED F/O 92 NL

Eommhhmml
mmmhhhmhhhhhu
mhhhhhomhhmuo
Ehhhhmmhmhu
EEEmohmhEmhI-

.6.

~1.

11111.2 JA~E.O _

MICROCOPY RESOLUTION TEST CHART
NATIONAL. BUR5EAU OF STANDARDS -- 963 -

RADC-TR-85-128 0

Final Technical Report

August 1985

U

SPECIFICATION TECHNOLOGY GUIDELINES

Lfl
Lf) Boeing Aerospace Company

CD

W
David R. Addleman, Margaret J. Davis and P. Edward Presson

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED DTIC
ELECT E

DEC20 f85

CLJ S

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700
5 1

8Z5 12 20 003 '"

-Thi report has been reviewed by the RADC Public Affairs Office (PA)

end Is releasable to the National Technical Information Service (NTIS). At

fIlS it will be releasable to the general public, including foreign nations.

IADC-TR-85-128 has been reviewed and is approved for publication.

APPROVED: 0

WILLIAM E. RZEPKA
Project Engineer

APPROVED:

RAYMOND P. URTZ, Jr.
Technical Director
Command and Control Division

FOR THE COMMANDER:

RICHARD W. POULIOT
Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in

ma.ntaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned. C

0

~'LAY~YU INCLASSIFIED

"p

O

* E ENCLASSIFIED/d
SECURITY CLASSIFICATION OF is PAGE i,>

REPORT DOCUMENTATION PAGE
la R[DORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2
a SECURITY CLASSIFICATION AUTHORITY 3 DIS[RIBuTIi;, A/AILABiLiTY OF REPORT

NAApproved for public rele __e; distribution .. ,.

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE unlimited
N/A" """"

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NuMBER(S) w
N/A RADC-TR-85-128""-- "

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(it applicable)". --

Boeing Aerospace Company Rome Air Development Center (COEE)

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS(City, State, and ZIP Code)

Seattle WA 98124 Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Rome Air Development Center COEE F30602-84-C-0073

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Griffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

62702F 5581 22 13

11 TITLE (Include Security Classification)

*" SPECIFICATION TECHNOLOGY GUIDELINES

12 PERSONAL AUTHOR(S)
David R. Addleman, Margaret J. Davis, Edward P. Presson .

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Yea', Month, Day) 15 PAGE COUNT
Final FROM 2Mar84 TO 1Mar85 August 1985

16 SUPPLEMENTARY NOTATION

N/A

"t COSATI CODES l8 SUBJECT TERr4S (Continue an reverse it necessary and identify by block number)

FIELD GROUP SUB-GROUP Software Specification Methodology Guidelines

09 02 Software Specification Tools Software Design Methodo-
Software Reouirements Methodology loy"

19 ABSTRACT (Continue on reverie if necessary and identify by block number)

-The purpose of this research was to provide the Air Force system and software development

manager with an uncomplicated set of guidelines for matching existing methods and tools to
the needs of specific development projects. The Specification Technology Guidelines effort
was divided into five major tasks. S

The first task studied software requirements in six Air Force mission areas. In the perfor-

mance of this task information was gathered regarding programming char-cteristics, software

development requirements, and the support environments of typical application software.
Within each mission area, differences in application and development of software most affect-
ing methodology selection were given more attention. All Air Force software efforts were
deemed to fall into 18 generic software categories.

[- uNCLASSIFIED/UNLIMiTF0 9-I SAMTE AS RPT F-]D [) I JSEP S UNCLASSIFIED .-.. '''"-

2ia -NAME OF RESPONSIBLE INEVIDUAL 22tb TF(F HON, (Includp AmCd I2 Oi;'C %*'V1Ot '.'.";
William E. Rzepka.. __(315?.2339-4063 RADC (COEF)"""

LD FORM 1473,84 MAR 83 APR edI.t,on may e used uTIewr 315d 330-4063 RA' (C ,EF-

All ottle, ed'tnor ,3v I-s
INCLASSI FT ED

...................................

. •.,* ___~.....- - -...-

7. 7

.°,- o r . '

PREFACE
This document is the final technical report, CDRL Item A002, that describes
the results of the five tasks involved in developing the specification technology .

guidelines and incorporating them into a Specification Technology Guidebook, .
CDRL Item A003. This report was prepared in accordance with the statement -.- •
of work, contract F30602-84-C-0073. It summarizes the work done for the
Rome Air Development Center by Boeing Aerospace Company in Kent, Wash-
ington.

In task 1 of this contract, the system developments in which the Air Force uses
computers and software were studied and organized into generic categories. As • .-
part of this task, a telephone survey was conducted of Air Force personnel asso-
ciated with software developments to review current Air Force practice and
experience, if any, with specification and design methodologies.

In task 2, existing system requirements, software requirements, and software '
design methodologies were studied and evaluated with respect to the category ,P.
of system and life cycle phase to which they were applicable.

In task 3, a set of guidelines were developed for the software manager to use in
selecting a coherent specification methodology and support tools to meet
specification needs of system requirements, software requirements, and software . .

design activities. - d

In task 4, these table-driven selection guidelines were documented in a guide-
book. The modular design that the tables provide simplify the use of the guide-
book and allow it to be expanded to include new methodologies and techniques.
The guidebook also describes the various in ;thodologies and tools studied in
task 2.

In task 5, the guidelines were applied to three example problems for C31
software development projects. A primary consideration imposed on each
example was compatibility with the Ada* programming language. The other
considerations used for system requirements and design of the C3I problems
were derived from actual requirements set forth in C31 RFP's, and working 4
knowledge of the requirements for C31 software and system projects gained by
Boeing Aerospace engineers during the last decade.

*Ada is a trademark or the U.S. Department of Derense (Ada Joint Program Office).

.,K-o -.

:: :: '::: . ::::.

7-.

TABLE OF CONTENTS -" ."

~~~~~~Page"..-' ''"

PREFACE i, _..W

ABBREVIATIONS iv-I- I. PROJECT OVERVIEW1
"': ~~1.1 B a ckground 1- - -'

:, ~~1.2 Project Summary1--,---.":-"_.
1.3 Scope of Effort 3 -.-. , .•

f' 1.4 Brief Description of Guidebook 3""-,
I::: ~2. SUMMAR OF TASK I 5::::
[... 2.1 ' Categorize Air Force System Developments5"

2.2 Survey of Air Force Requirements Specification Problems 9 .-
2.2.1 Survey Participants 9
2.2.2 Survey Results 10

2.2.2.1 Question 1: Major Problem Areas 10
2.2.2.2 Question 2: Unique Problems of Specific

Air Force Problems 10
2.2.2.3 Question 3: Experience with Methodologies and Tools 11 "
2.2.2.4 Question 4: Requirements Tracking and

Most Critical Phases 11
2.2.2.5 Question 5: Rapid Prototyping 11

2.2.3 Effect of Survey on Specification Technology Guidebook 11
3. SUMMARY OF TASK 2 12

3.1 Evaluate Current Methodologies 12
3.2 Criteria for Inclusion 13
3.3 Tool Evaluations 1-

4. SUMMARY OF TASK3 15
4.1 Define Selection Guidelines 15 .
4.2 Significance Level Determination 16 0

4.2.1 Considerations 17
4.2.2 Characteristics of Each Level 18

4.3 Methodology Power Rating 21
4.4 Fitting Methodology to Phase, Category, and Signifleance 22

5. SUMMARY OF TASK 4 22
6. SUMMARY OF TASK 5 23 e7 _

ii - "

-. .'- ..- '. ..... ... .... .-' .- -.' - - -. '-. .-.. . .-. . . . . . .-.-. . -.. . . . ... .. . . . . . .. . . "-' - " . i



TABLE OF CONTENTS - continued

Page

7. INSTRUCTIONS FOR MAINTENANCE OF GUIDEBOOK 24
7.1 Scoring a Methodology 24 . .
7.2 Expansion of the Capabilities List 33

8. RECOMMENDATIONS 35
BIBLIOGRAPHY
APPENDICES
A: Standard Description Formats A-I

A.1 Methodology Description Format A-2
A.2 Tool Set Description Format A-9

B: Capability Ratings B-1

LIST OF FIGURES

Number Page

1-1 Guidebook Organization 4
1-2 Software Categories 6
7-1 Methodology Scoring Worksheet 25
7-2 Example Use of Methodology Scoring Worksheet 27
7-3 Requirements Capabilities versus Software Category 29
7 - Design Capabilities versus Software Category 31

7-5 Example Update to Guidebook Path 1 (OSL=2) Table 34
B-1 Methodology Capabilities Ratings B-9 2 -

DTIC
ELECTE
DEC 2 0 185

.D ~ t . .. .. . ."

iii "' "" "" -" """

a ," - - - '

._LJ.



°o.°o "- . -o

ABBREVIATIONS

CADSAT military version of PSL/PSA
C3I Command, Control, Communications & Intelligence
DCDS Distributed Computing Design System
DoD Department of Defense
DSSD Data Structured System Design
HDM Hierarchical Design Methodology
IORL Input-Output Requirements Language
JSD Jackson System Design
MIL-STD military standard ,
OSL overall significance level
PAISLey Process-Oriented, Applicative, Interpretable Specification Language
pdl program design language
PSL/PSA Problem Statement Language/Problem Statement Analyzer
RADC Rome Air Development Center I
SADT Structured Analysis and Design Technique
SARA System Architect's Apprentice
SCR Software Cost Reduction project
SREM Software Requirements Engineering Methodology
VDM Vienna Development Method

iv

.-. .

. .. .. _



S~ ~ r. 2~~.Ar r~7~ .P .- .- r~ .. ! - - .- .-. " - .-.

1. PROJECT OVERVIEW

1.1. Background
During the 1970's, many techniques and tools were developed to support system
and software development processes. Most development concentrated on pro-,
gramming and testing activities, but a mini-proliferation of specification and
analysis tools occurred for supporting the front end life cycle activities: system
requirements analysis, software requirements analysis, and software design.
Complex specification methodologies appeared (e.g., that were based on data
flow, control flow, and finite state machine modeling techniques, among others)
and incorporated specialized analysis tools (e.g., formal languages, graphical
descriptions, static analyzers, etc.). Much has been written about their capabil-
ities, problem domains, and relative degrees of sophistication and success. How-
ever, no single methodology or technique is universally applicable to the
specification of all problem environments.

Rather than being enlightened, some users are confused by this proliferation of
methodologies and techniques and are no closer to understanding which metno-
dology best fits project requirements. This situation has been further compli-
cated with the introduction of the Ada programming language. Users must
understand which of the methods and techuiques result in designs taking max-
imum advantage of the software engineering principles which Ada directly sup-
ports and implements.

In such an atmosphere, the technical manager is confronted with many claims,
counter-claims, comparisons, and evaluations of existing specification methods,
most of which are uncorroborated. No effective focus has existed for aiding
software development managers during selection of the specification methodol-
ogy or tool best suited to their problem. The Specification Technology Guide-
lines effort was conceived to provide the needed focus and to organize metho-
dologies and tools information.

1.2. Project Summary

The purpose of this research was to provide the Air Force system and software - 5
development manager with an uncomplicated set of guidelines for matching
existing methods and tools to the needs of specific development projects. The
Specification Technology Guidelines effort was divided into five major tasks,
described briefly in the following paragraphs (for detailed descriptions refer to
sections 2.0, 3.0, 4.0, 5.0, and 6.0 of this report).

The first task studied software requirements in six Air Force mission areas. In
the performance of this task information was gathered regarding programning

--

I!:i:T :

0Q.f



I characteristics, software development requirements, and the support environ-0
mnents of typical application software. Within each mission area, differences in
application and development of software most affecting methodology selection
were given more attention. All Air Force software efforts were deemed to fall
into 18 generic software categories. Section 2.0 of this report describes these
categories in detail. Summaries of the Air Force missions are contained in
appendices A through F of the guidebook, with each appendix listing the -

software functions for that mission, by software categories.

The second task studied existing system requirements and software design
methodologies. Mature methodologies were identified (in this case "mature"
refers to methodologies that can be used by other than their developing organi-
zation) and analyzed to determine which software categories they sati-ifled and
the life cycle phase(s) to which they applied. Section 3.0 of this report
describes this task in detail.

The third task used information from the first two tasks in constructing guide-
lines that aid a project manager in selecting methodologies and supporting tools
for a particular software category and life cycle phase. The guidelines support
and technically complement system requirements, software requirements, and
software design specification activities. Task 3 is described in section 4.0 of this
report.

The fourth task documented the results of the first three tasks in a
Specification Technology Guidebook (hereafter called the Guidebook). The
Guidebook was written for use by technical managers of system and software .-

development projects and presents step-by-step procedures and explanations for
using the guidelines developed in task 3. The Guidebook also describes how a -

particular methodology and its products will satisfy Air Force specification
standards. Task 4 is detailed in section 5.0 of this report.

The fifth task developed examples detailing use of the Specification Technology
Guidebook. The three examples were drawn from typical C3 1 software develop-
ment projects. The first example approaches methodology selection from the
viewpoint of requirements capabilities and depicts development of C3 1 system
software for interactive displays. The second example approaches methodology
selection from the viewpoint of design capabilities and depicts an airborne
software system for use on an unnamed special purpose computer. The third
example approaches methodology selection from the viewpoint of a highly-
skilled manager who knows the capabilities he wants in a methodology.
Features required in the selected methodologies of all three examples included:
data base management (needed for storing software tools and life-cycle products
by phase), user friendliness, and compatibility of life-cycle products. In addi-
tion, the selections were constrained to be compatible with the Ada

d

. .. . . . . . .

.. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

.'-':.-- - - - -. a. .. 3"- . t .t'-a - . .S C A.. 4 '--



programming language. Task 5 is described in detail in section 6.0 of this
report.

1.3. Scope of Effort
The Guidebook effort was constrained to select among existing requirements
and design methodologies and tools. The Guidebook was written for Air Force
managers who perform daily planning and execution of system and software
acquisition and development. As such, it was prepared for users with a general
technical background, who are not necessarily familiar with thc. intricacies of
requirements and design technology.

1.4. Brief Description of Guidebook

The purpose of the Guidebook is to aid the technical project ma.ager in sele:t-
ing specification and design methodologies for a given project and life cycle
phase. Three different table-driven selection paths arc provided, along with
example usage of each. In addition, the Guidebook provides paragraph models
that will aid in preparing future Statements of Work that stipulate the use of
pafticular methodologies. The structure of the Guidebook is illustrated in
figure 1-1.
The organization of the Guidebook permits easy access since:

(a) A novice user can start with the introduction,
(b) A more experienced user who desires to select a requirements
methodology for a project can turn to section 2 of th( Guidebook and
follow the instructions describing how to accomplish that selection
(this procedure is Path I in the Guidebook),

(c) A more experienced user who desires to select a design methodol-
ogy for a project can turn to section 2 of the Guidebook and follow
the instructions describing how to accomplish that selection (this pro-
cedure is Path 2 in the Guidebook),

(d) A very experienced user who knows the features -he wants in a
methodology, regardless of the specification phase, can turn to section
2 and follow the instructions describing how to select a methodology
using a set of desired capabilities (this procedure is Path 3 in the
Guidebook), or
(e) Any user desiring information on a particular methodology or tool
can turn to the descriptions in section 4 of the Guidebook.

The following paragraphs describe the contents of tie Guidebook on a section-
by-section basis.

-.. . . .

......................



Apaid lit software4AmF o

AF nmioft am. and map do*,'
*bt G odaok vwnd4.d

softaraAe m"90 g SPACESA!MN'O

*1.*1

DESCRIPONONS

1Af AitMAMe.

umpiettaerteptal SECTION~n sf
AUTptAAshO forU impoooqa Mnd SAMPE STTEMET O

' 
dI 

tn 
o 

a~c~

MITW~oL~ES aq ,oPLEo

S* r

SECi9 4

METHO OLO. Vie .p~o om . . . . . . . .



The first section introdue-, the Gujd'book, d1scusse" it!s pu.-pose, anid describes
its organization. There is a brief discussion of the need for appropriate
specification techrology anid how, in gei-!I 31, the '3uidebook should be iised
during selection.

The second section presents guidelines for I 3ing the table-driven selection pat~hs . i
(i.e., Paths 1, 2i ad 3). Our table-driven -pproach has two ad-, antages: -

(1) It is easy to follow and use withcat ex'sensive training or reading,
and

(2) the tables are constructed for e-.sy expansion to incorporate new
methodologies and techniques as thc'y mature.

The third section provides guidelines ic: selecting auto~mated tools that will
support candidate methodologies.

The fourth section describes metbodologie-, and automrated tool sets.

4, The fifth s-, -.on briefly describes pertinent -oftware acJiSition life cycles. It
discusses P - Force. Phased Acquis~tirin ,bjectives and their relation to
specificatio .econologies used in the Guidebook.

The s'xtb -tion provides model parag. .phs for use in preparin~g future State-
ments of 1X',rk (SOWs) which will direct the usa of specification technologies in
the develop "'ient of Air Force Systems.

Appendices A through F summarize majer Air Force missions. Major functions
within eact. mission are described and informiation gathered regarding program-
ming c iai,,teristics, software development requixements, and the ;iupport
environ:.iei.ts of typical application soitware. Within each missiop area,
differer -es 'n application and developmen of software most affecting methodol-
ogy select; )n were given more attention. Mission softw..;re efforts were eecom-
posed tntc 18 generic software categories fsee fgure 1-21~. Tables in the appen-
dices -,ist 'he software functions for a mission, by software categories. These
tables aik' the user in fitting his proposed software dcvelopment into one of the
Guidboo'A categories.

2. SUNCLARY OF TASK 1

2.1. Catigorize Air Force System Devolopments
The first ask studied Air Force missions and organized sy,,tem developme-its
into broat.. generic categories relating computer-9 and softw ?e development to
the missicas. These system categories relate software functions to software
categories for later usage in methodology select.ion. Thc requirements for
s.)ecificati, n~ technology were defined for each software categc.. in terms of the

5



SOFTWARE CATEGORIES TABLE 0

Category Characteristics Description
(1) Arithmetic Based Data oriented Programs that do pri-

marly arithmetic (e.g., '
payroll and wind tunnel
data analysis) operations.
A rea-time environment
is not necessary. Small,
throwaway programs for
preliminary analysis also
fit in this category.

(2) Event control Control-oriented process- Does real-time processing
ing of data resulting from

external events. An
example might be a com-
puter program that
processes telemetry data.

(3) Process control Control-oriented process- Receives data from an
ing external source and issues

commands to that source
to control its actions
based on the received
data.

(4) Procedure control Complex processing Controls other software;
for example, an operating .
system that controls exe-
cution of time-shared and
batch computer programs.

(5) Navigation Complex processing Does computations and " - " -

modeling to compute
information required to
guide an airplane from
point of origin to destina-
tion.

(6) Flight Dynamics Control-dominated com- Uses the functions com-
plex processing puted by navigation

software and augmented " " -"-
by control theory to con-
trol the entire flight of an
aircraft.

Figure 1-2 Software Categories Table (part 1 of 3)

4' * - " .

v~r. ..................... ........" . -. . ,. ,



.

continued
Category Characteristics Description

(7) Orbital Dynamics Control-dominated com- Resembles navigation and
plex processing flight dynamics software,

but has the additional
complexity required by
orbital navigation, such as
a more complex reference
system and the inclusion
of gravitational effects of
other heavenly bodies.

(8) Message processing Data-dominated complex Handles input and output
processing messages, processing the

text or information con- .
tained therein.

(9) Diagnostic S/W Data-oriented processing Used to detect and isolate
hardware errors in the
computer in which it
resides or in other
hardware that can com-
municate with that com- A
puter.

(10) Sensor and signal pro- Control-dominated com- Similar to that of message
cesing plex processing processing, except that it

requires greater process.
ing, analysing, and
transforming the input
into a usable data process.
ing format.

(1l) Simulation Complex, depending on Used to simulate an
entity being simulated environment, mission

situation, other hardware,
and inputs from these to
enable a more realistic . .
evaluation of a computer
program or a piece of
hardware.

(12) Database manage- Data-oriented processing Manages the storage and
me nt access of (typically large)

groups of data. Such
software can also often S., _
prepare reports in user-
defined formats, based on
the contents of the data-
base.

Figure 1-2 Software Categories Table (part 2 of 3)

7•... .... .... ,"--



Category Characteristics Description
(13) Data Acquisition Control- dominated corn- Receives information in

plex processing real-time and stores it in
some form suitable for
later processing-, for exam-
pie, software that receivesW
data from a space probe
and files it for later

________________ ________________ analysis.

(14) Data rresentation Data-oriented Formats and transforms
data, as necessary, for
convenient and under-
standable displays for
humans. Typically, such
displays would be for
some screen presentation.

(15) Decision and planning Data-dominated complex Uses artificial intelligence
aids processing techniques to provide an

expert system to evaluate
data and provide addi-
tional information and
consideration for decision
and policymakers.

(15) Pattern and image Data-dominated complex Used for computer image--
processing processing generation and processing. ---

Such software may
analyse terrain data and
generate images based on
stored data.

(17) Computer system Data-oriented Provides services to opera-
Software tional computer programs

________________________ _________________________ (i.e., problem-oriented).

(18) Software development Data-oriented Provides services to aid in
tools the development of

software (e.g., compilers,
assemblers, static and

______________________ ______________________ dynamic analyzers).

Figure 1-2 Soft ware Categories Table (part 3 of 3)

8



life cycle development activities of system requirements analysis, software
requirements analysis, and software design. These specification technology
requirements are built into the tables presented in Guidebook section 2.0. The
requirements were based on considerations of available technology and the for-
mats prescribed by current Air Force specification standards (MIL-STD-490,
Specification Practices, 30 Oct 68) for system and software requirements and
software design documentation. At the kick-off meeting held at RADC in April
1984, it was agreed to support MIL-STD-SDS (to be released as MIL-STD-
2167).
We suggested starting with the standard software categories defined in the
Software Test Handbook produced under RADC contract number F30602-82-
C-0050, and relating these categories to the major Air Force missions. These
categorical relationships were successfully used in developing the Soft -.are Test
Handbook.

To assure that the results of the previous handbook were applicable for our
research, we undertook an informal, updating survey of current Air Force mis-
sion usage of requirements and design methodologies for software development. ..

Survey results are detailed in section 2.2. The survey showed that no basic
structural changes would be required in adopting the approach taken by the
Software Test Handbook, although we separated the Missile/Space mission
description into independent appendices, resulting in six appendices instead of
five. Additionally, minor changes were made in mission descriptions to account
for our focus on software development requirements instead of software testing
requirements.

2.2. Survey of Air Force Requirement Specification Problems

This survey of Air Force personnel (both civilian and military) determined gen-
eral and specific problems in preparation and analysis of requirement
.specifications, and examined methodology and tool experience.

Since Boeing proposed using existing descriptions of Air Force missions, and the
software functions and software categories used in the Software Test Handbook
(RADC contract F30602-82-C-0050), the survey determined which changes to _

this informational base were needed.

2.2.1. Survey Participants
The initial interview list comprised Air Force personnel contacted during the
Software Test Handbook survey. Each contact was asked to recommend other
individuals with pertinent experience in software development and use of

.. ~~~~ ~ ~ ~ ..............-.. . .. .. .. .

. .. -

" ... ..... . ." " " ...... .::!: ; i ! i ! ii ! ?! i!!i! !i



. . - . - .... .~.p.T 7~~-~ . ~ ' * ~ ... . . * ~ -

specification methodologies and tools. A total of 32 contacts were made, and 25 •
extended interviews held.
Most participants were military and civilian Air Force personnel in all six Air
Force mission areas, and included staff and project personnel at various levels of
responsibility. Additionally, we talked with personnel from DoD, Aerospace
Corporation, and MITRE Corporation.

2.2.2. Survey Results
The relatively informal survey was structured so that each participant was
asked th, same general questions. Survey questions fell into five groups, and
are discussed in the following sections. Of course, the discussions often ranged
widely afield, depending on the experience and interests of. each participant;
these chats often provided additional insights.

2.2.2.1. Question 1: Major Problem Areas
One survey participant said the major problem with requirement specifications A
is that "we still don't know how to write an effective one." Most of those sur-
veyed did not respond so strongly, but felt there were major problems in the
specification of systems and software. The descriptions of major problem areas
tended to fall into three categories:

(1) The ambiguity of specifications - Requirement specifications are
written by the contractor to be understood by Air Force acquisition
organizations; as a result, some users had trouble understanding the.-" ....-.

language of the specification and felt they couldn't intelligently com- .
ment on it.
(2) Difficulty in generating a B-level specification from an A-level
specification - In a study of the Space Division mission, an excellent
B5 spec was the single most critical element in a successful system
development.
(3) The time consuming tracing of requirements from concept
definition through system test - This task is deemed enormously
important and is currently being accomplished by hand.

2.2.2.2. Question 2: Unique Problems of Specific Air Force Missions
A surprising survey result was that almost every participant said that they had
no unique requirement specification problems characteristic of their area. - -

Several participants identified unique characteristics of their product areas, such
as the unit cost of armaments, the high reliability required of spacecraft, and
the many human interfaces in C3 systems. Few of these problems were truly

V

." 10

.. . . . . . . . . . . . . .- . .. ". .-



MS

-1. - o - . o

problems of specifying requirements; the probtems were, instead, specific cases
of the general problems encountered by all.

2.2.2.3. Question 3: Experience with Methodologies and Tools

Most of those surveyed did not use any methodology or tool as part of their
standard practice. Few had used more than one methodology or tool. None V ,

* considered that their use of any methodology or tool had been a success, nor
did anyone know of a success story from others.

PSL/PSA (and CADSAT, its military equivalent) seemed the best known tool.
Second most frequently mentioned was Docwriter (now called TEMSE). How-
ever, only a fraction of the participants had direct experience with either.

*" 2.2.2.4. Question 4: Requirements Tracking and Most Critical Phases

We asked each survey participant about the need for requirements tracking,
and to identify the life cycle phases when this need was most critical. Almost
everyone felt that there was a strong need to be able to track requirements.
The two most frequently mentioned phases were (1) the transition from user
need to system specification, and (2) the transition from system specification to
a B-level spec. A significant fraction declined to identify any phase as being
most critical.

One icoroclast said that requirements tracing was no real problem; and that it.
• , was .simply a bookkeeping job. He further stated that all the methodologies

and tools were attempting to solve the wrong problem. His estimation was that
these tools addressed only five percent of the total task. He felt the major
problem was the creative, inventive analysis required when going from user
needs to system spec, from system spec to segment spec, and from segment spec
to B-level spec. His opinions were not seconded elsewhere.

2.2.2.5. Question 5: Rapid Prototyping

Most of those surveyed agreed that a rapid prototyping capability sounded
attractive, but said they did not know how to accomplish it and that they
doubted any usable capability would be available soon. Several said that it was
entirely the responsibility of the contractor.

2.2.3. Effect of Survey on Specification Technology Guidebook
The survey provided no inform.-tion that required changing the standard
software categories used in the Software Test Handbook. It did, however, pro-
vide insight into the problems faced by the Air Force in the specification and .. j
use of requirements; and that insight helped us produce a more usable and

-e zi

°-. . ... . . . . . ...



relevant guidebook. "

3. SUMMARY OF TASK 2

3.1. Evaluate Current Methodologies

We identified, categorized, and characterized specification technology metho-
dologies and automated tools that were suitable for practical application to Air
Force mission software development projects. Although the number of metho-
dologies described in the computer science and software engineering literature
was considerable, we selected 12 methodologies for evaluation. The considera-
tions we used in their selection are described in section 3.2 below.

Each of the 12 methodologies was categorized by its primary philosophy of
requirements and design specification. The requirements analysis categories
(i.e., the way a requirements methodology models the system to be produced)
are:

1. Flow-oriented - models the system in terms of control or data flow. .L

2. Finite-state machine - models state of system and transitions
between states.
3. Object-oriented - models the entities (objects, concepts, processes)
in the system, including relationships among them and events and
mechanisms that change them.

The design categories are:
1. Decomposition - guided either by function, control, or data
hierarchical relationships.
2. Encapsulation - producing either data or process abstractions.

3. Data Structured - guided by inherent relationships among input
and output data items.
4. Programming Calculus - guided by assertions about the effect a
series of statements must produce.

We developed a standard format for characterizing each methodology. The for-
mat is a composite of characteristics found in three different sources: (1) the
Methodman I report, (2) a study done by Hughes Aircraft Company entitled
Reusable Software Implementation Technology Reviews, and (3) Boeing internal
studies of software engineering methodologies and tools. We used a similar
form to characterize automated tool sets. Appendix A of this report contains
an annotated copy of both formats. .O'
Boeing software engineers with relevant expertise in specification technologies
reviewed and concurred with our evaluations of methodologies and tools.

.1•2 . °.. ..



3.2. Criteria for Inclusion
The major criterion for inclusion of a methodology was "maturity such that the
methodology could be used by organizations other than their originators." This
criterion encourages inclusion of all the common metho4e.logies that have been
repeatedly field tested and their results well documented; it excluded in-house
methodologies developed by a company for its own use, in accordance with its $~
own standards. Thus, we evaluated a group of methodologies that are as
representative of state of the practice of specification technology as possible.
The emphasis on maturity immediately eliminated from consideration those
methodologies which are:

a. theoretical descriptions never implemented,
b. academic exercises developed to prove a particular technique is
feasible, and
c. developments in progress as knowledge engineering (expert system)
research projects.1

The methodologies we characterized are listed below.

DSSD Data Structured Systems Design
HDM Hfierarchical Development Method
SADT Structured Analysis and Design Technique
SA/SD Structured Analysis and Structured Design

(Realtime Yourdon)
SOR Software Cost Reduction - Navy
SREM Software Requirements Engineering Methodology
VDM Vienna Development Method
DODS Distributed Computing Design System
JSD Jackson System Design
PAISLey Process-oriented, Applicative,

Interpretable Specification Language
SARA System ARchitect's Apprentice
USE User Software Engineering Methodology.

DSSD, SADT, SA/SD, and SREM are well-known, well-exercised, basic metho-
dologies. They were developed from research performed in the early 1970's in
response to the crisis in soft ware. Many DoD contractors use "customized"
methodologies having strange names, but most of these methodologies are, in
fact, closely related to the four methodologies above. Before a contract officer

1. The field of knowledge engineering is itself immature.

13

.-.. . .. . .'..

.....................



. 7

", % V,

rejects a methodology proposed by a company, the question might first be 0

asked: "On which methodology is this one based?" It may prove acceptable as
is, or the company may accept a recommendation to use its "parent" methodol-
ogy in its place.

HDM and VDM are representative of specification technologies based on formal -

specification languages. 2 They have been successfully used outside their V
developing organizations on significant projects.

DCDS is the methodology being developed as an extension of SREM to distri-
buted systems design.
SCR and JSD are representative of technologies based on the characteristics of
abstraction and encapsulation. SCR has seen use by the Navy and Bell Labs. -
JSD is commercially available in England.

PAISLey is representative of a trend to operational (prototyping) requirements
specification methodologies. 3 PAISLey is not truly mature in the sense that it
has been used by any organization other than its originator. However, the
methodology was developed expressly for embedded systems. For development
of less than life-critical software, the benefits should outweigh the risk of using
it. •"; . :""".

SARA and USE are representative of technologies developed in university set-
tings that are full-scale methodologies, rather than feasibility demonstrations of
single ideas.
Some methodologies were excluded from evaluation because the information we
could gather on them was too meager. This is particularly a problem with
methodologies developed outside the United States, where language and time
barriers complicate our acquiring information on them.

The past year has seen the release and publication of material about metho-
dologies billing themselves as Ada compatible or object-oriented (implying com-
patibility with Ada). In some cases, these announcements relate to
modifications of existing methodologies and can be considered as additional
information about them.4 The basic description of these methodologies is not
appreciably altered by such modifications, except that now it can include text
about Ada compatibility. In other cases, the announcements describe methods
that can be incorporated into existing methodologies to increase the Ada com-
patibility of produced designs.

2. Affirm, CLEAR, Ordinary, SDM, Z, SLAN-4, and LARCH are other methodologies in
this category. 0)"

3. GIST is another methodology in this category.
4. ANNA is an exception to either case, in that it is an entirely new methodology
designed for Ada compatibility. Unfortunately, material on ANNA was not readily avail-

14-'.
.-.: ':...



3.3. Tool Evaluations
There are literally thousands of commercially available software packages
(software tools) that claim to assist requirements analysis and design. It was
impractical to review them all during this effort. We concentrated, instead, on
reviewing and classifying tool sets that support particular methodologies
through the specification phases of software development. Our reason for doing
this was simple: tools tailored specifically to the methodology are much more
effective than generic tools. And finally, most methodologies already have a set
of software tools developed for them (e.g., REVS is tailored specifically for
SREM).

When methodologies (DSSD, HI)M, SREM, DCDS, PAISLey, SARA, USE) hed
tool sets developed specifically for them, we described both the methodology
and tool set features in the methodology description section of the Guidebook.
We did not describe these tool sets a second time in the software tools section.,

We evaluated ono. tool set (TAGS5 ) for use with SADT and three tool sets
(ARGUS, EXCELERATOR, PROMOD) for use with SA/SD. TAGS is cer-
tainly the best tool set based on SADT. There are at least four more tool sets
available for SA/SD that we did not review. We confined our evaluations to
tool sets for which we found software engineers having hands-on experience
with the product (e.g., characteristics like usability require actual experience to
be properly evaluated).

We treated PSL/PSA as a generic automated tool set useful both in project
support and documentation. PSL/PSA can be used with several methodologies
(i.e., particularly helpful to those performing data flow analysis).

4. SUMMARY OF TASK 3

4.1. Define Selection Guidelines

We developed guidelines to aid a project manager in selecting a final candidate
methodology and supporting tools for a particular software category and life
cycle phase. This selection process matches the methodology's abstract model-
ing capability to the conceptual needs of the software category and life cycle •
phase. In doing this we have fulfilled the explicit requirements of the Statement
of Work (SOW) for the effort. But, the guidelines we developed also fulfill the
implicit requirements of the SOW in terms of practicality of a selected

able until February 1985, too late for inclusion in the Specification Technology Guide-
book.
5. Also known as IORL.

15

. . . . . . . .. . . . . ...- :
.......

.. ..............

.'. . ,.. . .. . . .-.. . '. "., ., " '., .- " :,- , .- - ,-,.'.. ,'_,. z.. . . . . . . . . . . . . . .. '......-..-........ . . ". . .'..'....'.. " ..



rul" W4 A. T%. 
7IS

methodology to a project. Our guidelines match the relative power of the
methodology and support tools to the relative significance of the development
project. This extends the original intent of the SOW, and effectively tailors
final selection to the project.
The guidelines were set up to hide the identity of candidate methodologies until
selection is completed. This blind selection process mitigates the effects of
selector bias and acquaints the selector with methodologies he might otherwise
never consider.

The selection guidelines provide three different paths. The first two paths
require the user to rate the significance of the project and to determine its
software category. Once project significance and software category are deter-
mined, the user can choose Path 1 and base selection on the requirements
specification phase; or Path 2 and base selection on the design specification
phase. Path 3, provided for the experienced manager, bypasses significance rat-
ing and software categorization, and allows the manager to base selection on
individual methodology capabilities needed for a project.

4.2. Significance Level Determination
A common sense notion in software development is that a methodology for a
project should be appropriate to the size of the project. Discussions in the
literature about the differences in programming-in-the-small versus
programming-in-the-large are elaborations of this notion. P
Our significance level concept is a refinement of the notion of project size. We
developed this concept because projected raw count of source code statements,
in itself, is not a sufficient discriminator for choosing one methodology over
another. For example, formal, verifiable, complex methodologies normally con-
sidered more appropriate to large projects might be recommended for small pro-
jects involving life-critical decisions.
The significance level concept examines the software development project from
three viewpoints: project considerations, software considerations, and quality
considerations. Under project considerations, cost, criticality, and schedule,
measure the importance of funding agency attributes to the project. Under S
software considerations, complexity, development formality, and software util-
ity, measure the conceptual effort required by the project, and thus measure the
significance of the project to its developers. Under quality considerations, relia-
bility, correctness, maintainability, and verifiability measure the importance
end-users attribute to the project.

Quality considerations exist other than the four listed above. We incorporated
only those considerations that were independent of software category. Two

16

." 'lK:. .--

-...... ... '.-..... . . .... ...:.:i-..:-:- ."..-:.. . -" '. .. '.. :-.:-''. :.. ". - .



reasons support this decision.
(1) Simplification - Since the guidelines describe a manual system,
additional quality considerations would have meant the addition of
worksheets (as many as 18), one for each software category. .".'

(2) Clarity - The relationship of the unused quality attributes to indi- , .,

vidual software categories is not straightforward.

4.2.1. Considerations

The relationship of each consideration to significance level is explained below.

Project Considerations
(1) Cost - The significance of a project increases in direct proportion
to relaxation of constraints on cost. A low budget with tight con-
straints indicates a lower significance than a relatively unconstrained
budget.

(2) Criticality - The significance of a project rises in direct proportion
to the criticality of the assignment. A project in which flight crew
safety is involved is more significant than one whose failure would be
of nuisance impact to its users.

(3) Schedule - The significance of a project increases in direct propor-
tion to relaxation of constraints on scheduling. A project with tight
controls on scheduling is less significant than one whose schedule can
slip in order to get the software 'right'.

Software Considerations .' -.

(4) Complexity - The significance of a project rises in direct proportion
to the complexity of the solution. A difficult problem whose solution
is hard to validate is more significant than a problem whose solution is
straight-forward and easy to check.

(5) Development Formality - The significance of a project rises in
direct proportion to the desired level of contractor controls. The
stronger the control (and the more formal the review of interim
results), the more significant the project.

(6) Software Utility - The significance of a project rises in direct pro-
portion to the utility of the application. Software developed as a .

one-shot feasibility demonstration is less significant than software
developed to provide real-time support to a C3I task.

17

............................................................ . .. .. .



Quality Considerations S

(7) Reliability - The significance of a project rises in direct proportion
to level of reliability needed. Software that should respond correctly
to nominal conditions is less significant than software which must
have its faults6 removed as soon as they occur.
(8) Correctness - The significance of a project rises in direct propor-
tion to level of correctness needed. From a specification point of view,
level of correctness is a measure of how completely the software or its
design satisfies project requirements and constraints. Software that is
considered acceptable when its operation providas the functionality
needed even though it does not meet other constraints (such as a
user-friendly interface) is less significant than software wbose design
must be formally validated against the requirements specification.
(9) Maintainability - The significance of a project rises in direct pro-
portion to the level of maintainability needed. Software that is not
expected to be maintained is of less significance than software
expressly developed so that the extent of changes are optimally local- %
ized.
(10) Verifiability - The significance of a project rises in direct propor-
tion to the level of verifiability needed. Software whose documenta-
tion is to be casually maintained in its source code is of less
significance than software whose documentation is complete (includes
requirements through source code documents) and always up-to-date.

4.2.2. Characteristics of Each Significance Level -

A project of significance level 0 has the following characteristics:

6. A fault is an undesirable response to anomalous conditions.

18

.. . . . . . . . . . . . ... .4 4 .-... 4.. 4. . .

*.. .. .4.4.. . . . . .,.. . .. .4, ". .:.;..". .. - . . ' ... .. .4. .'.... . . -. . .. . - . . .. .



J4_ . .°. ..

.-

- Low Budget, emphasis on minimum cost
- No criticality assignment

'- ight Schedule
- Straight-forward solution; easy to checkout __,",

- Few defined requirements; informal development; W.
nsed locally

- One-shot; Prototype; Test Software; Demonstration Software
- Respond correctly to nominal conditions
- Functionality met; constraints ignored

No maintenance expected
-Documentation in source code

Test geaerators, conversiop table programs, and trade study simulations are
exampls of projects that would have significance level 0.

A proje:t of significance level 1 has the following characteristics: t

- Normal cost constraints
- Nuisance Impact
- Some schedule constraints
- Moderate Complexity
- Normal to Strong Contractor Controls
- Ground Based Software; Data Reduction;

Mission Prep Software
- Faults corrected periodically;

temporary workarounds provided
- Functionality and constraints met
- Predict impact of changes
- Source code documentation updated

Editors, compilers, mission and environmental simulators are examples of pro-
ject! that would have significance level 1.

1

1O9

• . . .* . -

-° . . . 4. . ... .. . *. * - . .. * .,*



A project of significance level 2 has the following characteristics:

- Some Cost Flexibilitv
- Mission Impact
- Normal Schedule Constraints
- Greater Complexity '
- Strong Contractural Controls; Formal Reviews
- Realtime Avionics, C3 and C3- software
- Faults removed ASAP
- Implementation validated against

design specification ..-
- Impact of changes somewhat localized
- Full complement of documentation;

design documentation upda~ed too

AWACS, ALCM, pMALS, C31, and Avionics mission planning are examples ofA
projects that would have significance level 2.

A project of significance level 3 has the following characteristics:

-Cost not predominant factor;- '

relatively unconstrained
- Nuclear, flight crew safety
- Additional failt detect requirements will

not impact schedule
-Difficult Problem; Complex Solution; .

Hard to Validate
- Generally Contracted Rigid Controls

Over Development
- Highly Critical AppliCdations; Possible

Catastrophic Results
- No faults o A_____:
- Design validated against requizements specification
- Extent of changes optimally localized
- Requirements through source code documentation

always up-to-date

Nuclear control and life-critical software are examples of projects that would
have significance level 3.

20

Costnotpredminnt fcto; • -

• ":___~ ~ ~~ . -... --..- .



- . - -~. -. ~ .' ' -2'.7. -x - . -- -

4A,

4.3. Methodology Power Rating

We rated thirty individual capabilities for each methodology. Six capabilities
were useful for requirements specification:

state modeling object modeling "

data flow modeling timing performance .. .
specification

control flow modeling accuracy performance
specification

Fourteen were useful for design specification: .

functional decomposition module interface definition
data decomposition formal verification
control decomposition configuration management
data abstraction completeness analysis
process abstraction consistency analysis
data base definition Ada compatibility
concurrency/synchronization notation for code behavior

specification

Ten were independent of life cycle phase:

prototyping validation
test plan generation usability
automated tools available maturity
traceability training/experience level
transition between phases MIL-STD documentation

Each capability was rated on a scale of 0 to 3, where 0 is no support and 3
most support. The actual definiticas of these numbers for a specific capability
is found in Appendix B. In general, the factors that determine the relative
power of one methodology over another are:

(a) formality of notation,

(b) complexity of specification produced,

(c) rigor of mathematical foundation, and

(d) degree of automated support.

21

-. .- .--



'-~ ~ -. >.--. -. "' * , --. o - --. o-. -

I7-7-o7oO o-

4.4. Fitting Methodology to Phase, Category, and Significance S

Paths 1 and 2 of the guidelines lead to methodology selection based on life-cycle --

phase, software category, and significance level. Path 1 differs from Path 2 by
life-cycle phase; path 1 is concerned with requirements specification and path 2
with design specification. Methodologies are fitted to software categories by ' ,
tables that list desired capabilities by software category. The tables permit V.
matching methodology concepts desired by a user to concepts needed for a par-
ticular category. Methodologies are related to project significance by tables
comparing them against a fictional ideal methodology (one that provides only
the capabilities desired, at exactly the level of support wanted). We assumed a
uniform level of support for all capabilities desired; that is, each capability
should provide the same level of support as the overall significance rating of the
project.

Path 3 of the guidelines permits the experienced manager to choose the set of
capabilities he desires in a methodo!ogy. It also permits him to select a non-
uniform level of support for the chosen capabilities.

5. SUMMARY OF TASK 4 - BUILD THE GUIDEBOOK
The Specification Technology Guidebook, which documents the guidelines
developed in the Task 2, was designed uoing the Software Test Handbook
(RADC-TR-84-53, Vol II) as a model. Test Handbook organization was
reviewed for its applicability to the Guidebook, and for its usefulness to techni-
cal managers of system and software development projects. We found the basic
structure of the Test Handbook to be satisfactory for the Specification Technol-
ogy Guidebook. The organization is shown in Figure 1-1.
The design of the selection paths and the tables that support them was a very
complex and time-consuming process. Our goal was to design a table-driven
selection methodology that would include all the important considerations and
that could be easily used. The design originally proposed omitted life cycle
phases and relative significance of the project as considerations for selection cri-
teria. We decided any selection criteria would prove inndequate if it merely
indicated methodology capabilities without addressing how well those capabili- -

ties were supported.

The second design, produced during the contract, included all important con-
siderations, but required the user to make many (up to 50) small arithmetic cal-
culations. We decided, in the interests of user friendliness and simplification, to
design tables with the scoring precalculated. Accomplishing this required over _".

1700 computations, but our third design successfully removed most of the
drudgery from guidelines usage.

22.w. • . °



- o . ' .• P- .

An additional benefit of the table-driven selection approach is that the tables
can be easily modified to reflect new capabilities for existing specification and
design technologies, as they are developed. "'"-N

The future penalty for the precalculated simplicity of the selection process is , <..-.

that more work will be required to modify or revise the methodology sccre _,____.__

tables. For each methodology added or updated, someone must compute new V.
scores for software category, life cycle phase, and significance level Instructions - -

for adding new methodologies and computing scores for the tables are in See-
tion 7.0 of this report.
The Air Force Mission appendices from the Software Test Handbook were
revised and updated for inclusion in the Specification Test Guidelines. The
most significant change was replacement of the appendix combining the
Missile/Space missions; current Air Force organization is better reflected by the
Missile mission (Appendix D) and the Space mission (Appendix F).

6. SUMMARY OF TASK 6 - METHODOLOGIES FOR C31 SYS-
TEMS
In this task, the guidelines developed in Tasks 1, 2. and 3 were used to select
software requirements and software design methodologies to form the front-end
of an environment especially desigaed to support the development of a I3i sys-
tem. Selected tools, especially those that address software design activities, are
required to be compatible with the Ada Programming Language.

The survey of C3I systems summarized in Appendix C of the guidebook, and
our experience with a variety of ground-based and airborne C31 systems, con-
vinced us that we couldn't fully demonstrate usage for this mission with a sin-
gle example. The complexity and variety of the many C31 systems, requiring
different combinations of software functions, makes it difficult for a single set of
methodologies to suffice. Therefore, we chose two C31 systems to serve as
examples. Additionally, we decided to demonstrate use of all three selection
paths.

A ground-based interactive display system is used to demonstrate Path 1, which
allows choosing a methodology based on the needs of the requirements phase.
An air-borne system targeted for a special purpose computer is used to demon-
strate Path 2, which allows choosing a methodology based on the needs of the
design phase. Our third example demonstrates how an experienced project
manager can select a methodology based on specific capabilities, without
referencing the actual project for which he wants that methodology.

23

............................. - .

;),G-~~~~~~~~~~.:........... .-. ......-. < .+.........;--.-.-..............-.... ..-- ... . ..-.-..-.. ..-... ..- ,...-.-....... +........- ..'.:-.



• _ . * -. -

J...." ~ .

4.. .. . . ,

7. INSTRUCTIONS FOR MAINTENANCE OF GUIDEBOOK _

Since the guidelines are extensible, it is possible to update the Guidebook to:
(a) add methodologies, (b) reflect capability enhancements in existing metho- -

dologies, (c) change (by addition or deletion) the list of capabilities against
which a methodology is scored, and (d) reflect any changes in the relationships
of software categories to desired capabilities. V
Section 7.1 describes how to compute the scores for a methodology. The scores
are a function of the software category, the path (life cycle phase), and the
significance level of the project. (Scoring a methodology generates 18*204=144
values.) Section 7.2 explains what changes are necessary if the list of capabili-
ties rated (presently 30) is expanded.

7.1. Scoring a Methodology
The process described below shows how to update the existing scores for a pre-

C' viously evaluated methodology or to add scores for a methodology never before
evaluated. An update would become necessary when a revised version of the
methodology or its tool set is released. A methodology can be added as infor-
mation becomes available for rating its capabilities, as long as it is usable by
organizations other than its developers.
Scoring a methodology can proceed only after its individual capabilities have
been rated. Appendix B details the rating system on which the present score
tables are based. The appendix also contains a table (figure B-1) listing capa-
bility ratings for the methodologies evaluated in the Guidebook. The table was
used to compute the Path 1 and 2 scores given in the Guidebook; and is identi-
cal to Guidebook figure 2-22. This figure should be updated if the ratings for a
methodology are revised or if a new methodology is rated.
Figure 7-1 is a two page worksheet that organizes the calculations for a single
software category. Figure 7-2 is a completed worksheet. In this example, the
software category used is 5 and the methodology is SREM. Down the left side
of the first page of the worksheet is a list of the 30 capabilities used to rate
methodologies. The next column RATING has space for listing the individual
rating of those capabilities. We used the capabilities ratings shown in figure S
B-1 of appendix B to calculate the methodology scores used in the guidebook.

The third column DESIRED has space for marking the capabilities which are
desired for the software catcgory. The capabilities are divided into three
groups: requirements, design, and universal. Notice that the DESIRED column .__.
is already marked for the universal capabilities group. The scoring process
assumes that all universal capabilities are desirable. Figure 7-3 is a matrix of
requirements capabilities versus software category with is marking the desired

24

-.(. . .'.-..*.* . . . . . .- -. . .-.. . . . . . . . . .

. .. . . .. ,. -,',"-. .-.-... '.-'...----.-...-. ." ......-...... • - -- -.--.. •
. . . . . . . . . ..- c %.."" ''"""r ' . " -"-"" ." -"- ."-.-: : -"."-" ' - ". "-".'." '-" .- ." . "' " " -" ". .. "



Methodology Scoring Worksheet - page 1
Software Category -Methodology

CAPABILITY RATING DESIRED VALUE
______________ REQUIRMENTS ___ _____

state modeling _______ ___COUNT(R)-

data flow modeling _____ _____ ____

control flow modeling --Oft-_

object modeling _____ ____ ____ SUM(R)-
timing performance spec ____

accuracy performance DEIN ________

functional decompostion _________

data decomposition_____
control decomposition _____

data abstraction __________

process abstraction_____ ______ ____

data base definition _____ ____ ____ COUNT(D)-
concurrency /synchronicity _____ ____

module interface definition __________

formal verification _____

configuration management _____

completeness analysis ____ ___ SUMD)-'

consistency analysis _____

Ada compatibility_____
code behavior notation ______ _____

_______ _______ UNIVERSAL _ _ _ _ _ _ _ _

prototyping _ ____ X ____

test plan generation _____ X ____

automated tool available ____ X ___ COUNT(U)= 10
traceability _ _____ X _____

transistion between phases _ ____ X ____

validation _ _ X_ _

usability X ____

maturity ______ X ___ SuM(U)=
train ing/expenence level X _____

MIL-STD documentation _ ___ x ___ _____

Figure 7-1: Methodology Scoring Worksheet (part I of 2)

25

...-



Methodology Scoring Worksheet - page 2

Software Category Methodology

SUM() =SUMR) + SUM(D) + SUM(U)=

SUM(2) =SUM(D) + SLTM(U)=

COUNT(l) =COUNT(R) + COUNT(D) + COUNT(U)

COUNT(2) =COUNT(D) + COUNT(U)=

PATH 1
A

* - OSL=0- MS(1,O) =SUM(1)=

OSL=1: MS(l,l) = SUM(l) - COUNT(1)=

OSL=2: MS(1,2) = SUM(1).- 2*COUNT(1)

OSL=3: MS(1,3) =SUM(l) - 3*COUTNT(l)

PATH 2

A OSL=O: MS(2,O) =SUM(2)

OS=:M(,*=SU()-CUT2

OSL=1: MS(2,1) = SUM(2) - 2CONT(2) =

OSL=2: MS(2,2) =SUM(2) - 2*COUNT(2)=

figure 7-1: Methodology Scoring Worksheet (part 2 of 2)

26



Methodology Scoring Worksheet - page 1

Software Category Methodology R A."

4 . % - . ° -

CAPABILITY RATING DESIRED VALUE i..REQn E NTS . ..
state modeling 3 _ __ 0 COUNT(R)um

data flow modeling
control dow modeling /"- - :-"

object modeling x SUM(R)-

timing performance spec 7
accuracy performance spec a x _____.__--_"

DESIGN __-"__._.-_

functional decomposition _ X /__-___-

data decomposition / "

control decomposition / 0 ______. 0

data abstraction ,0 __"_"''""0

process abstraction 0 "
data base definition 3 _ COUNT(D)=

concurrency/synchronicity x I..______

module interface definition -Z X.___ __
formal verification 4 X ,__.____

configuration management 40 X 0 . . -.

completeness analysis 3 3 SUM(D)-

consistency analysis J .
Ada compatibility X _ -1 /7
code behavior notation ._ x 3._-- - -

UNIVERSAL "_.-__-______'-__-
prototyping X ,- ,

test plan generation 0 X _-_____:

automated tool available .3 X .3 COUNT(U)= 10
traceability 3 X - _
transistion between phases .3 X 3

validation .3 X _____-_"

usability / X I___-.._

maturity _3 X -3 SUM(U)=
training/experience level 3 X .3 a 3 "

IMIL-STD documentation _ X a .-_.____-_"_-

Figure 7-2: Example Use of Methodology Scoring Worksheet
(part I of 2)

27 
-°. 

.-- 

.



-7 -1 TITAI17737 T7777,171-777 1,7"- 5" -.

METHODOLOGY SCORING WORKSHEET - page 2 --

I ~~Software Category .L..Methodology RT*

SUM(1)=SUM(R)+SUM(D) +SUM(U)= 1i 7 *a 3-

SUM(2)=S"MD) +SUM(U)= '+2 1

COUNT(l) =COUNT(R) + COUNT(D) + COUNT(U) =/* 0

COUNT(2)=COUNT(D) COUNT(U)=9-O IA

PATH 1

* ~OSL=O: MS(1,o) = SUM(1) =+

OSL-2: MS(1,2)=-SUM(1) - 2COUNT(1)= 47 - AJ. 1

OSL-3: MS(1,3) = SUM(1) - 3*COUNT()=Y '7. 3~ ~

PATH 2

OSL==O: MS(2,O) = SUM(2) L

OSL=1: MS(2,1) - SUJM(2).- COUNT(2)= 1-/? .1

OSL=2: MS(2,2) =SUM(2)- 2*COUNT(2) = - W/

OSL=3: MS(2,3) =SUM(2).- 3*COUNT(2) =I 1 O - 3*I - /7

Figure 7-2: Example Use of Methodology Scoring Worksheet
(part 2 of 2)

28

. . .. .. . . . . ......... ... .......



V

Desijble Requiremients Phase Capabilities

Modeling Performance
_________Techniques Specification

Flow
state Object Timing Accuracy

Data Control

S 1x _ __ x _ __ x

o 2 _ _ _ _ _ _ xx
F 3 _ _ _ _ _ _ x _ __x

T 4 x x x
W 5 x x x x x
A -6 x x x x x
R 7 x x x xx x
E 8 __ __ x x x

g x x __ __

C 10 x x x x x x
A 11 x xx x x
T 12 x______ x ___ __ x

E 13 x x x x x x
G 14 _____x ____ __ x ______ x

0 1 x x x _ _ _

R 16 x x x _ __ x
Y 17 x x x x _____

18 1 _ _ __ _ x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 7-3: Requirements Capabilities versus Software Category

29



. . . . . . . . . . . . . . . . . . . . . .. . . . . . ...

entries. Figure 7-4 is a matrix of design capabilities versus software category. ,
with 2s marking the desired entries. Across the software category row, the
capability entries marked as desired in figures 7-3 and 7-4 are exactly those
capabilities to be marked in the DESIRED column on the worksheet. The set
of desired capabilities describes the ideal methodology for the software category.

The fourth column VALUE has space for recording the ratings of the capabili-
ties marked as desired. Undesirable capabilities are given a value of zero.

The last column on the first page has space for recording intermediate -'alues.
For each group of capabilities it is necessary to count the number of desired
capabilities (note that the count for the universal group is pre-printed) and sum
the numbers in the VALUE column. The definitions for the each group are
listed below.

COUNT(R) r umber of requirements
capabilities marked as
desired

SUM(R) sum of values in require-
ments capabilities group

COUNT(D) number of design capabili-
ties marked as desired

SUM(D) sum of values in design
capabilities group

COUNT(U) number of universal capa-
bilities marked as desired

SUM(U) sum of values in universal
capabilities group

The second page of the worksheet has the formulas for computing the scores.
The four formulas labeled COUNT(I), COUNT(2), SUM(1), and SUM(2) are
intermediate values. (The number inside the parentheses indicates the path
number, corresponding to Paths 1 or 2 in the Guidebook. Since the success of
Path 3 depends on the expertise of a user, any methodology scoring for Path 3
will derive from the user's own formula.) 77

30
. . - .-.. -.. .

• -.. %. .-.-..... ."-.-. .-.... "..... ... .. ,..° " ,-"" •

" ,..4 .. ,- *. .2 : . -. .-- - -.-- .-.. . . . . . . . . . . . . . . .... .''-'' .. ''. _ . . . . . . .. .- - _'' - ' - .'''._



V

Deirable Design Phase Capabilities

Architectural Design Concerns
- - Qaity Anatce Techniques Dtaled

Decompositios Abstraction base cur ale_________ Conceus
toile data cost data po deja ency later Formal Conig Static Analysis Ad& Code

lion trol cum Wo face Verd rtoCop Cai Compat Behaw
WeDf cation ______ _______a ible icr

S I x I x x x it x 2

0o z 2 x x 2 1

W 3 x x 2 I x I x x

E 6 x I a x x x x x
A 6 x I x - x I z

Al 9 x x x z - x z

T 12 x x z x - x 2 1 x

E 13 a x x a 2 a 2 a a a x

G 14 x I x

Y IS fa xaa a x z M

Figure 7-4: Design Capabilities versus Software Category

31



') , .. •

.:. ".-.~-... . ..

The general formula for computing the Methodology Score (MS) for a particular

path and significance level is:

MS(path, sl) - SUM(path) - sl * COUNT(path).

The first term of the formula [SUM(path)] is the support power the methodol- V
ogy provides. The second term [sl * COUNT(path)] is the support power an
ideal methodology would provide at a given significance level with a uniform 7
rating (the specific sl) per capability. Thus, the second term serves as a correc-
tion factor.8 The MS value represents the support power of the methodology
relative to the support power of the ideal methodology. A positive result indi-
cates that the selected methodology provides more support to the specification - -

" process than nominally desired. A negative result indicates less support than
nominally desired.

The remaining 8 formulas on the page are resolutions of the general formula for
Path 1 (the requirements phase path), Path 2 (the design phase path), and t

- significance levels 0 through 3. The Methodology Score (MS) computation for
both paths includes all the universal capabilities since they will be desirable in
both requirements and design specification phases. The MS computation for
Path 1 includes requirements and design capabilities since it chooses a metho-
dology that will be used beginning in the requirements phase and continuing
through the design phase. The MS computation for Path 2 excludes the

* requiremrents carabi'Ities since the selected methodology will be used beginning

7. The fo,'nula for computing the Methodology Score (MS) if the capabilities desired in
the ideal methodology are treated non-uniformly is:

MS = r(..,,,., - )

where r,,t ,.a, is the methodology's rating for a particular capability and r,d,. is the
rating given that capability in the ideal methodology. Note that the MS sum only in-
cludes the capab* lities desired in the ideal. Thus, methodologies are not penalized for
providing capabilities other than those nominally desired, which is reasonable since un-
desired capabilities can be ignored.
8. Notice that the correction factor for significance level 0 is 0. This corresponds to the
realirtic assumption that development of a project with the following characteristics does
not need specification technology: (a) Low, tight budget, (b) no criticality assignment, (c)
tight schedule, (d) straight-forward solution and easy to check out, (e) few formal require-
ments, (f) expected use in a local environment as test or demonstration software, (g) not
required to recover from anomalous conditions, (h) acceptance predicated solely on correct "
functionality, (i) not expected to be maintained, and (j) documentation confined to source
code.

32

;.. :.?L...........:



" . ",. 
I  

t-,.

in the design phase. .9

The results for path 1 are used to update Guidebook figures 2-9 through 2-12
(for significance level 0 through 3 respectively). The results for path 2 are used
to update Guidebook figures 2-17 through 2-20 (for significance level 0 through
3 respectively). The columns of the figures represent software categories; the
rows of the figures represent methodologies. Updating a methodology's scores is
a matter of locating the proper row and column and modifying the value. Fig-
ure 7-5 locates the proper entry for updating the OSL value of 2 for path 1,

*4, software category 5 and metbodology F (SREM). Adding a methodology is a
matter of adding a new row, and entering values in the proper columns for the . ..
each software category.

7.2. Expansion of the Capabilities List

If a capability is added to the capability list, it will be necessary to recompute
the scores for every methodology with respect to each software category in
which that capability is desired. If the capability belongs to the universal group, A.
it will be necessary to recompute scores for every methodology and every
software category. If the capability belongs to the requirements group, it will
only be necessary to recompute Path 1 scores. If the capability belongs to the
design or universal group, it will be necessary to recompute both Path 1 and 2
scores.

The ste.ps for adding a capability follow:

(1) Define the capability.

(2) Define the significance level ratings for the capability. (The rat-
ings used in the guidebook are defined in Appendix B.)

(3) Decide the group (requirements, design, or universal) to which the
capability belongs. That is, is the utility of the capability independent
of life cycle phase? If so, then it belongs to the universal group. If
not, then in which phase is it useful?
(4) If the group is requirements or design, update the appropriate
desirability matrix (figure 7-2 or 7-3) to show the desirability of the
capability relative to the 18 software categories.

(5) Rate the methodologies for that capability, adding the ratings to
Guidebook figure 2-22.

(6) For every methodology recompute the significance level scores for
the paths and software categories impacted by the addition of the
capability.

33
. . - .- •. .- o..

1 ..i l



Path 1
Methodology Stores (OSL - )

*Methodology Software
0* Category

1 2 3 14 6'J 7381910 11121314 15 16 1? 10

A -2D .211-211-22 - 2-9-22 -20 -29 -24 I-20 .29 -20 -18 -21 -22 -17

B -8 -10 i-10 1-9 -9 -13-0 -O-140 -13 -8 -10 -6 -9 -9 -10 -
-18 .17 1.17 1-20 -21 -22. -26 -21 -18 -26 -22 -18 -26 -18 -18 -21 -21 -17,

D -12 -13 1-13 1-14 -1s 4j~ -19 -15 -12 -19 -15 -12 -10,.12 .10 -13,-15 -111
1-1 .1 -1 -1 N -20 -15 -13 .-20 -18 -13,-20 -13 -16 .16 -15 -12 ~ .~--

f F I 10 -2 .2-2-1 161-5-6 045-80-80-3 -3 -8-2
26 27-23 -17 .27-26 -17-27 -17-21 .1g-23 -17

3-4.A-5 -2 -5 -0-2 3 -8-83 -83 -7 2-2 3
___-16 .23 -231-24 -26 -23 -27 -20 -16 -27 -23 -16 -27 -16 -18.-21 -201-16.

-11 8 . - - .-1 13 1.11 -11 _-13. -14 -11 -13 -11 1-14 1-14 .111-121 0

_5 _ 1 -4 -5-5.1 -4 6-3 1 0

4_ _7-_4- 81 9181 9. .4 -g .4 -8 -7 -8 -4

Figure 7-5: Example Update to Guidebook Path 1 (OSL=2) Table

34 .

.7



S. RECOMMENDATIONS
We recommend that the methodology used in the Guidebook be computerized, .-

so that a user-friendly interface (perhaps menu-driven) would lead the user
step-by-step through the selection procedure. The software could be pro-
grammed to perform all computations and pattern matching now required of
the user. The Guidebook selection method has been designed in a modular W "4
fashion so that tables can be easily changed to reflect advances in the technol-
ogy, and easily expanded to include new methodologies and techniques. This
same structure could be implemented on a computer, permitting the same
growth and flexibility as the Guidebook. Further, the ability of a menu-driven = .

scheme to vary its actual presentations based on the software category involved *
would make it feasible to include more quality attributes in the significance
level computations.
Our second recommendation is to re-evaluate the 18 standard software
categories after several years of use. By that time, any significant problems .

should be evident, either in the categories themselves or in clarity of definitions.
Usage in the field often uncovers difficulties unforeseen by the designers; and
software engineers often have different vantage points for viewing the world of
software. During our investigation, we found no compelling reason to modify
the categories, which were derived as part of another contract to build a
Software Test Handbook (RADC-TR-84-53, Vol. II) for the Air Force.

Our third recommendation is that consideration be given to a study that rates
the effectiveness of usage of the Guidebook selections. Appropriate questions
might be:

(a) Was the methodology a success? (Remember our survey did not
uncover any successes.)
(b) What capabilities would have been helpful, but were not provided?
(Should the list of capabilities be expanded?) .

(c) What capabilities were not used? (Should the recommended capa-
bilities for a particular software category be adjusted?)

(d) Did any capability have a negative impact on meeting project 4

goals such as cost or schedule? (Does the significance level determina-
tion need adjustment?)

35



S.~y. *.-~w
* -a

S
- -

S

a
I
I

-I

0
~1

rL~r

'02 -
*2 

-

0* . . - '* ---.. *-.-..--............................- 
-.. - -

- - - .- ,<.-.--...---.-.

- - - *.--.. -- - . -Nt. *. $. ~~,*~. * *t. Nt. *' - - - - N *N '. x;-: -: -: ~. *.>N' -. $N%*t. . . . . -



".. . . -..,+.. ;

.O+

,I..? ..).7--:

N BIBLIOGRAPHY

-V

Ali Miii, Workshop Notes of International Workshop on Models and Languages
* for Software Specification and Design, IEEE Computer Society Press,

March 30, 1984.

Abbot, R.J. and D.K. Moorhead, "Software Requirements and Specifications: A
dSurvey of Needs and Languages," Journal of Systems and Software, pp.
297-316, December 1981.

Alford, M.W., "Software Requirements Engineering Methodology (SREM) At
the Age of Four," COMPSAC '80 Proceedings, pp. 366-374, 1980.

Alford, Mack, Requirements For Distributed Data Processing Design, IEEE
publication CH1445-6f69/00000-001, 1979.

Alford, Mack, "SREM At the Age of Eight: The Distributed Computing Design
System," Draft, December 1984.

Alford, Mack W., "A Requirements Engineering Methodology for Real-Time
Processing Requirements," IEEE Transactions on Software Engineering,
vol. SE-3, no. 1, pp. 60-69, January 1977.

Azuma, M., T. Tabata,Y. Oki, andS. Kamiya, "SPD: A Humanized Documenta-
tion Technology," Proceedings of COMPSAC '88, Chicago, Ill., November
7-11,,1983.

Balzer, Robert and Neil Goldman, "Principles of Good Softwa-e Specification
and Their Implications for Specification Languages," Proceedings of
Specifications of Reliable Software, pp. 58-67, IEEE Computer Society
Press, April 3-5, 1979.

Beck, Leland L. and Thomas E. Perkins, "A Survey of Software Engineering
Practice: Tools, Methods, and Results," Transactions on Software En-
gineering, vol. SE-9, no. 5, pp. 541-561, IEEE Computer Society Press,
September 1983.

Beichter, F.W., 0. Herzog, and H. Petzsch, "SLAN-4 - A Software
Specification and Design Language," Transactions on Soft ware Engineer-
ing, vol. SE-Mc , no. 2, pp. 155-162, IEEE Computer Society Press, March
1984.

B-1

7- - ' -

,_ Afford M........................................................._.] _ .

'"Prcesig....rme....EE.T.na.ios.n.ofwae.n.neri.,....ii-



4O-

Belcastro, Richard J., "Specification Template Speeds Software Design," EDN
Design Management, October 27, 1082.

4, Bell, Thomas E. and David C. Bixler, A Flow Oriented Requirements Statement
Language, TRW Software Series, April 1976.

Bergland, G. D., "A Guided Tour of Program Design Methodologies," Comput-
er, pp. 13-37, IEEE Computer Society Press, October 1981.

Bjorner, Dines, The VDM Principles of Software Specification 8f Program
Design, Lecture Notes in Computer Science: Formalization of Program-
ming Concepts, pp. 45-74.

Boebert, W.E., W.R. Franta, and H. Berg, "NPN: A Finite-State Specification
Technique for Distributed Software," Proceedings of Specifications of Reli-
able Software, pp. 139-149, IEEE Computer Society Press, April 3-5, 1979. ._

Boehm, B.W., T.E. Gray, and T. Seewaldt, "Prototyping Versus Specifying: A
Multiproject Experiment," Transactions on Software Engineering, vol. SE-
10, no. 3, pp. 290-302, IEEE Computer Society Press, May 1984.

Booch, Grady, in Software Engineering with Ada, The Benjamin/Cummings _ _
Publishing Company, Inc., 1983.

Boydstun, Louis E., Daniel Teichroew, Steven Spewak, Yuzo Yamamoto, and
Guy Starner, "Computer Aided Modeling of Information Systems,"
Proceedings of the COMPSAC '80, IEEE publication CH1607-1/80/0000-
0037, Chicago,Ill., October 27-31.

Brackett, Michael H., Developing Data Structured Information Systems, Ken
Orr & Associates, Inc, Topeka, Kansas, 1983.

Britton, Kathryn Heninger, R. Alan Parker, and David L. Parnas, "A Pro-
cedure for Designing Abstract Interfaces for Device Interface Modules,"
Proceedings of 5th International Conference on Software Engineering, pp.
195-204, March 1981.

Burstini, Meir, Yoram Forscher, Yossi Maimon, and Itzhak Rotbard, "Su-
perPDL - A Software Design Tool," Proceedings of SoftFair '83, pp. 307-
313, IEEE publication CH1919-0/83/0000/0307, July 25-28, 1983.

Campbell, Roy H. and Peter A. Kirslis, "The SAGA Project: A System for
Software Development," Proceedings ACM Sigsoft/Sigplan Software En-
gineering Symposium, pp. 73-80, ACM, Pittsburgh, PA, April 23-25, 1984.

B- 2

••.°. ............. .. ....................................



.11

Celko, Joe, John S. Davis, and John Mitchell, "A Demonstration of Three Re-
quirements Language Systems," SIGPLAN Notices, vol. 18, no. 1, January
1983.

Chen, B.-S. and R.T. Yeh, "Formal Specification and Verification of Distributed
Systems," Transactions on Software Engineering, vol. SE-9, no. 6, pp.
710-722, IEEE Computer Society Press, November 1983.

Cheng, Lorna L., Mary Lou Soffa, and Yee-Hong Yang, "Simulation of an I/O
Driven Requirements Language," Proceedings of COMPSAC '82, Chicago,
Ill., November 8-12, 1982.

Chmura, Louis J. and David M. Weiss, "The A-7E Software Requirements Do-
cument: Three Years of Change Data," Proceedings from AGARD Confer-
ence CP-3O0, September 1982.

Clemmensen, Geert B. and Ole N. Oest, Formal Specification and Development
of an Ada Compiler - A VDM Case Study, IEE; publication 0270-
5257/84/00000/430, 1984.

Collahan, J.E. Jr. and N. Roussopoulos, "Timing Requirements for Time-Driven
Systems Using Augmented Petri Nets," Transactions on Software En-
gineering, vol. SE-9, no. 5, pp. 603-616, IEEE Computer Society Press,
September 1983.

Coulter, Mel A., "Evolution of the Structured Methodulogies: Implications for
Instruction," Proceedings of the American Instiute for Decision Sciences
11th Annual Meeting, pp. 21-293, March 1982.

Cristian, F., "Correct and Robust Programs," Transactions on Software En-
gineering, vol. SE-10, no. 2, pp. 163-174, IEEE Computer Society Press,
March 1984.

Davis, Alan M., "Formal Techniqu.s and Automatic Processing to Ensure
Correctness in Requirements Specifications," Proceedings of Specifications
of Reliable Software, pp. 15-35, IEEE Computer Society Press, April 3-5,

Davis, Alan M., "Automating the Requirements Phase: Benefits to Later Phases
of the Software Life-Cycle," Proceedings of COMPSAC '80, pp. 42-48,
IEEE publication CH1607-1/80/0000-0042, Chicago,Ill., October 27-31,
1980.

Davis, Gary I., Man-Machine Interface Design Using Structured Analysis and
Simulation Techniques, IEEE publication 0360-8913/82/0000-0233. - ..

B-3 
. °

B-~~.4 3 ''-. -.'.'



Davi, Margaret J, Structural Speification: High-Lvel Program Desig, 'Z ., :
University of Delaware ,May 1984. Master's Thesis '' Z:

Deutsch, Michael S., "A Software Engineering Development System Using

,, =.. -.% .: =

Structured Methods," Proceedings of the 15th Asilomar Conference, pp..-.. -. ,..
156-159, IEEE Computer Society Press, October 9-11, 1981..-'-,... ..; -'.

Deutsch, Michael S., "An Industrial Software Engineering Methodology Sup- -... ..
ported by an Automated Environment," Proceedings of the National Corn- ..- -:
puter Conference, pp. 301-307, 1982.

Dibble, R., "Software Design and Development Using Mascot," Proceedings---'.."
from A GARD Conference CP-380 (Software for Avionics), September 6-10, : :::(:
1082..

Doane, Robert B., The Evolving Nature of the C3 Systems Acqisition Process,
Source of paper currently unknown. Master'sThe

Dubois, J.P. Finance, and A. LaSf sweerde, "Towards A Deductive Approach
to Information System Specification and Design," in Requirements En-
gineering Environments, ed. Y. Ohno, pp. 23-32, North-Holland Publishing-
Company, 1982.

Durell, William R., Cohesion: A Means to Data Base Flexibility, Compu-
terworld, October 10, 1983. 0(SfarfoAvnisepmbr81

Emerson, Thomas J., "The Logical Structure of Software Design," Proceedings
of COMPSAC '81, pp. 363-368, IEEE publication CHI1698-0/8 1/0000/0363, 'i='i-
Chicago, Ill., November 16-20, 1981.

Epple, W.K., M.D. Hagemann, M.K. Klump, and U. Rembold, "The Use of
Graphic Aids for Requirements Specification of Process Control Systems,"
Proceedings of COMPSAC '83, Chicago, Ill., November 7-11, 1983.bl

Everhart, C. R., "A Unified Approach to Software System Engineering,"
Proceedings of COMPSAC '80, pp. 49-55, IEEE Computer Society Press,
Chicago,Il., October 27-30, 1980.

Freeman, Peter and Anthony .Wasserman, Software Development Methodolo-

gies and Ada, DoD, November 1082. (Known as Methodman 1.) '"-"-

Gerhart, Susan L. and David S. Wile, "Preliminary Report on the Delta Experi- :!i!:: iment: Specification and Verification of A Multiple-User File Updating

Module," Proceedings of Specifications of Remible Software, pp. 198-211,
IEEE Computer Society Press, April 3-5, 1979. Compter ocity'Pess

B- 4 ::-::::

-: .::','""'"":5"'C"hi"cago-: , l, October"° 7- 30 1980.-"'- - -" "-"' " ". '' - "''- - -"."" -" ' - -: • -' ,".. .



.6-

munications of the ACM, vol. 27, no. 5, pp. 428-434, May 1084.

Gieszl, Louis R., The Logical Design of a Major AFLC Injormation System
IEEE publication CH1810-1/82/0000/0153.

Goguen, Joseph A., "An Introduction to OBJ: A Language for Writing and
Testing Formal Algebriac Program Specifications," Proceedings of
Specifications of Reliable Software, pp. 170-189, IEEE Computer Society
Press, April 3-5, 1979.

Grabow, Paul C., William B. Noble, and Cheng-Chi Huang, Reusable Software - -

Implementation Technology Reviews, Hughes Aircraft Company, October
1984.

Heitmeyer, C.L. and J.D. McLean, "Abstract Requirements Specification: A
New Approach and Its Application," Transactions on Sftware Engineer-
ing, vol. SE-9, no. 5, pp. 580-589, IEEE Computer So--iety Press, Sep-
tember 1983.

Heninger, Kathryn L., "Specifying Software Requirements fo- Complex Sys-
tems: New Techniques and Their Application," IEEE Transactions on
Software Engineering, vol. SE-6, no. 1, pp. 2-13, January 19-0.

Hester, S.D., D.L. Parnas, and D.F. Utter, "Using DocumentatioL as a Software
Design Medium," The Bell System Technical Journal, pp. 1941-1977, Oc- -.... _,
tober 1981.

Hirschmann, Lutz and Niels Christensen, "The Computer Aided Specification
System Easy ," Proceedings from AGARD Conference CP-S30 (Software
for A vionics), September 6-10, 1082.

Hoare, C.A.R., Communicating Sequential Processes, IEEE publication ACM
0001-0782/78/0800.

Howden, William E., "Validation of Scientific Programs," Computig Surveys,
vol. 14, no. 2, June 1982.

Howden, William E., "Contemporary Software Development Envir',nments,"
Communications of the ACM, vol. 25, no. 5, pp. 318-329, May 1982.

Irvine, C. A. and John W. Brackett, "Automated Software Engineering
Through Structured Data Management," IEEE Transactions on Software
Engineering, vol. SE-3, no. 1, January 1977.

B-S..-..-. ,...*...... ...... ...... ......

.-... . . .. . . .. ...
V .. " ] ... ' " . .... "''" -- -.- -' -' -. : , . '" " -" ." . - - - - ": . i , .- -- ] ' : -- -

" . .€ ..: .. -".".'.. , '.".. .€ " . .",. .".". ".,. .'' ". ' "'.-'."' " . 7." ". " "."'." ","'." ."-" ." .7.. ,. -.-.'"-" .''. "."7"



.-. w- r *O .o

S - ; -- -7 7

Iwahashi, David S., "Order and Discipline: Benefits of Structured Techniques,"
Datamation, October 1979.

Jackson, Michael, System Development, Prentice/Hall International, 1983.

Jalote, Pankaj, "Specification and Testing of Abstract Data Types," Proceed-
ings of COMPSAC '83, Chicago, IM., November 7-11, 1983.

Jard, Claude and Gregor V. Bochmann, "An Approach to Testing
Specifications," The Journal of Systems and Software, 1983.

Johnson, Donna, "Selecting a Methodology for Requirements Analysis,"
Proceedings of IEEE Phoenix Conference, pp. 357-361, IEEE publication
CH1864-8/83/0000/357, 1983.

Jolley, Truman, Software Engineering Toolbox Selection for the Cobbler's Chil-
dren, BCS BAC-SD, June 30, 1983.

Jones, C.B., The Vienna Development Method: The Meta-Language, Lecture
Notes in Computer Science, Springer-Verlag, 1978.

Jones, Capers, "A Survey of Programming Design and Specification Tech-
niques," Proceedings of Specifications of Reliable Software, pp. 91-103,
IEEE Computer Society Press, April 3-5, 1979.

Jores, Cliff B., Software Development: A Rigorous Approach, Prentice/Hall
International, 1980.

Jordan; D. and B. Hauxwell, Proceedings from AGARD Conference CP-330
(Software for Avionics), September 6-10, 1982.

Kampen, G.R., "SWIFT: A Requirements Specification System for Software,"
in Requirements Engineering Environments, ed. Y. Ohno, pp. 77-84,
North-Holland Publishing Company, 1982.

Kanda, Yasunori and Masakatsu Sugimoto, "Software Diagram Description: -

SDD and It's Application," Proceedings of COMPSAC '80, Chicago,Ill.,
October 27-31, 1980.

Kemmerer, R.A., "Testing Formal Specifications to Detect Design Errors,"
Transactions on Software Engineering, vol. SE-11, no. 1, pp. 32-43, IEEE
Computer Society Press, January 1985.

Ken Orr & Associates, Inc., Data Structured Systems Development Methodology,
Ken Orr & Associates, Inc, Topeka, Kansas, 1977.

B-6
. °..°. ".-.. ..

. ." °................

.: ._..-.. .. .--..-...-..,--....-... . .. .-.- ..- . ... . .-. . . .. ..-.- ,.. -,.-......... .-.-.... . . .... . ..-,, -. .



Koch, G. and U. Rembold, "The Necessity of Requirements Engineering in Pro-
cess Automation," Proceedings of COMPSAC '80, Chicago,Ill., October
27-31, 1.80. °

Krause, K. W. and L. A. Diamant, "A Management Methodology for Testing
Software Requirements," Proceedings of IEEE COMPSAC '78.

Kuni, Tosiyasu L. and Kazunori Yamaguchi, "Formalism for Design Evolu-
tion," Proceedings of COMPSAC '80, Chicago,Il., October 27-31, 1980.

Kuo, H. C. and J. Ramanathan, "Concept Based Tool for Standardized Pro-
gram Development," Proceedings of COMPSAC '81, November 16-20,
1981.

Laventhal, Mark S., "Synchronization Specifications for Data Abstractions,"
Proceedings of Specifications of Reliable Software, pp. 119-125, IEEE Com-
puter Society Press, April 3-5, 1979.

Lehman, M.M., V. Stenning, and W.M. Turski, "Another Look at Software
Design Methodology," (SEN) ACM Sigsoft Software Engineering Notes,
vol. 9, no. 2, pp. 38-53, ACM, April 1984.

Lipka, Stephen E., "Some Issues in Requirements Definition," Proceedings of
COMPSAC '80, pp. 56-58, IEEE Computer Society Press, Chicago, Ill., Oc-
tober 27-31, 1980.

Ludewig, J., "ESPRESO - A System for Process Control Software
Specification," Transactions on Software Engineering, vol. SE-9, no. 4, pp.
427-436, IEEE Computer Society Press, July 1983.

Lund, John C. Jr., Michael R. Ordun, and Ronald J. Wojcik, "Implementation
of the Calling Card Service Capability - Application of a Software Metho-
dology," Proceedings of the International Conference on Communication,
Denver, June 1981.

M.H. Cheheyl, et at, "Verifying Security," ACM Computing Surveys, vol. 13,
no. 3, pp. 279-340, September 1981.

Maekawa, Mamoru, "Extensibility and Adaptability of Distributed Computing -"

Systems," Proceedings of COMPSAC '80, Chicago, Ill., October 27-31,
1980. 0.

Marca, D. and D. Thornhill, "Modeling Software Configurability Require-
ments," in Requirements Engineering Environments, ed. Y. Ohno, pp. 51-
58, North-Holland Publishing Company, 1082.

B-7

L7 -



0

Marca, D. and C. McGowan, "Static and Dynamic Data Modeling for Informa-
tion System Design," Proceedings of IEEE Software Engineering 6th Inter-
national Conference, September 13-16, 1982.

Matsumoto, Y., T. Tanaka, and S. Kawakita, "Specification Transformations
and a Requirements Specification of Real-Time Control," in Requirements
Engineering Environments, ed. Y. Ohno, pp. 143-150, North-Holand Pub-
lishing Company, 1082.

McCoyd, Gerard C. and John R. Mitchell, "System'Sketching: The Generation
of Rapid Prototypes for Transaction Based Systems," (SEN) ACM Sigsoft
Software Engineering Notes, vol. 7, no. 5, December 5, 1082.

Meyer, Betrand, "On Formalism in Specifications," Software, vol. 2, no. 1, pp.
6-26, IEEE Computer Society Press, January 1085. A_.

Mili, A., "System Requirements Specification: A Simplified Approach," in Re-
quirements Engineering Environments, ed. Y. Ohno, pp. 123-132, North-
Holland Publishing Company, 1982.

Miller, T.J. and B.J. Taylor, "A Requirements Methodololgy for Complex
Real-Time Systems," in Requirements Engineering Environments, ed. Y.
Ohno, pp. 133-142, North-Holland Publishing Company, 1982.

Mishima, Yoshitake, Susumu Murai, and Masahi Okada, Ezperience with Tool-
Kit Approach in SMEF Prototyping, IEEE publication CH1919-
0/83/0000/0223.

Morton, Richard and Karl Freburger, "Toward Methodology for Function
Specifications," Proceedings of COMPSAC '80, pp. 201-206, IEEE Com-
puter Society Press, Chicago, Ill., October 27-31, 1980.

Nakao, Okazuo, Koichi Haruna, Noishia Komoda, and Hiroyuki Kaji, "A Struc-
tural Approach to System Requirements Analysis of Information Systems,"
Proceeding of COMPSAC '80, pp. 207-213, IEEE Computer Society Press,
Chicago, Ill., October 27-31, 1980.

Nyarii, Erika and Harry Sneed, "SOFSPEC: A Pragmatic Approach to Au-
tomated Specification Verification," The Journal of Systems and Software, . -

1983.' '

Orr, Ken, Structured Requirements Definition, Ken Orr & Associates, Inc,
Topeka, Kansas, 1981.

Parnas, David L., "On the Criteria to be Used in Decomposing Systems into
Modules," Communications of the ACM, pp. 1053-1058, December 1972. - * " - -

B- 8

., '.. .............................. ....- .. ...



V% • ' irir

P'.°•" -.. -. --°°.-°

Payton, T., S. Keller, J. Perkins, S. Rowan, and S. Mardinly, "SSAGS: A Syn-
tax and Semantics Analysis and Generation System," Proceedings of
COMPSAC '82, Chicago, IM., November 8-12, 1982.

Penedo, Maria Heloisa, Daniel M. Berry, and Gerald Estrin, "An Algorithm to
Support Code-Skeleton Generation for Concurrent Systems," Proceedings
5th International Conference on Software Engineering, pp. 125-135, March
1981.

Pettus, Robert 0. and Michael J. Trask, "A Pragmatic Approach to Top-Down
Program Design," Proceedings of IEEE 1982 Southeast Conference, April
4-7, 1982.

Phillips, N.C.K., "Safe Data Type Specification," Transactions on Software En-
gineering, vol. SE-10, no. 3, pp. 285-289, IEEE Computer Society Press,
May 1984.

Pirnia, Sham and Marsha J. Hayek, Requirements Definition Approach for an
Automated Requirements Traceability Tool, IEEE publication 0547-
3578/81/0000-0389.

Poston, Robe-t M., "Preventing Software Requirements Specification Errors
with IEEE 830," Software, vol. 2, no. 1, pp. 83-86, IEEE Computer Society
Press, January 1985.

Price, C. P. and D. Y. Forsyth, "Practical Considerations in the Introduction of
Requirements Analysis Techniques ," Proceedings from AGARD Confer-
ence CP-330 (Software for Avionics), September 6-10, 1982..

Prywes, N., B. Szymanski , and Y. Shi, "Dataflow Specification of Concurrent
Programs," Proceedings of COMPSAC '83, Chicago, Ill., November7-11,
1983. ' " "

Rajarman, M.K., "A Characterization of Software Design Tools ," (SEN) ACM
Sigeoft Software Engineering Notes, October 1982.

Ramamritham, K. and R.M. Keller, "Specification of Synchronizing Processes,"
Transactions on Software Engineering, vol. SE-9, no. 6, pp. 722-733, IEEE
Computer Society Press, November 1983.

Rauch-Hinden, Wendy, "The Software Industry Automates Itself," _
SOFTWARE, October 1983.

Razouk, Rami R. and Gerald Estrin, "Modeling and Verification of Communi-
cation Protocols in SARA: the X.21 Interface," IEEE Transactions on .-.

Computers, vol. C-29, no. 12, pp. 1038-1052, December 1080.

B-9

• - - ... . . . . .o . . . .. .% , . . . . . . .. * • ° , o . .- ,



Reifer, Donald J. and Stephen Trattner, "Software Specification Techniques: A
Tutorial," Proceedings of COMPCON'76, pp. 39-44.

Riddle, W.E., "A Study of Software Technology Maturation," (SEN) ACM Sig-
soft Software Engineering Notes, vol. 9, no. 2, pp. 21-37, ACM, April 11984.

Roman, G.C. and R.K. Israel, "A Formal Treatment of Distributed Systems
Design," in Requirements Engineering Environments, ed. Y. Ohno, pp. 3-
12, North-Holland Publishing Company, 1982. :8

Raman, G.C., "A Rigorous Approach to Building Formal System Requirements
Proceedings of COMPSAC '82, Chicago, I-., November 8-12, 1982.

:% Ross, Douglas T., John B. Goodenough, and C.A. Irvine, "Software Engineer-
Society Press, May 1975.

Ross, Douglas T. and Kenneth E. Schoman, Jr., "Structured Analysis for Re-
quirements Definition," IEEE Transactions on Software Engineering, vol.
SE-3, no. 1, pp. 6-15, January 1977.

Ross, Douglas T., "Reflections on Requirements," Transactions on Software En-
gineering, vol. SE-o, no. 1, pp. 2-5, IEEE Computer Society Press, January
1977.

Ross, Douglas T., "Structured Analysis (SA): A Language for Communicating
Ideas," IEEE Transactions on Software Engineering, vol. SE-3, no. 1, pp.
16-34, January 1977. -

Rudkin, Ralph I. and Kenneth D. Shere, "Structured Decomposition Diagram:
A New Technique for System Analysis R" DATAMATION, October 1979.

Rzepka, William E., "Software Design Methodologies-Some Management Per-
spectives " Rome Air Development Center, no. RADC-TR-82-5", Griffi.ss
Air Force Base, NY.

Rzepka, William E., Using SREM to Specify Command and Control Software
Requirements, RAD n-TR-82-310, Rome Air Development Center, Griffiss

AiSorce Bse, MNY, 198. ",.l._

Rzepka, William E., "RADO SREM Evaluation Program - A Status Report,"_
(SEN) ACM Sigsoft Software Engineering Notes, vol. 8, no. 1, pp. 20-22,
January 1983.

Scheffer, Paul A., "The Software Designer Workbench DWB ."IEEE publica
tion CH1919-O/83OOOO/O2O1.

B-710

..........- 4 Janar 197...O ...

Rukn-alhI n KnehD Shre "Srcue eopoiinDarm -""""""



Schoffelman, Daniel J., "Some Practical Guidelines for Software Design,"
Proceedings of IEEE Conference, Phoenix, AZ, 1083.

Shaw, M.,- G.T. Ales, J.M. Newcomer, B.K. Reid, and W.A. Wulf, "A Corn-
parison of Programming Languages for Software Engineering ," Software --Practice and Experience, vol. 11, pp. 1-52, 1981.

Shaw, R.C., P.N. Hudson, and N.W. Davis, "Introduction of a Formal Tech-
* nique into a Software Development Environment," (SEN) ACM Sigsoft

Software Engineering Note., vol. 9, no. 2, pp. 54-79, April 1984.

Simpson, H. R., "Mascot Development to Improve Software Structure and In-
tegrity " Proceedings of IEEE Conference CP-30 (Software for Avionics)

September &-10, 1982.

Smoliar, S. W., "Operational Requirements Accommodation in Distributed Sys- .
ter Design," Proceedings of COMPSAC '80, pp. 214-219, IEEE Computer
Society Press, Chicago, Il., October 27-31, 1980.

Smoliar, Stephen W., "Using Applicative Techniques to Design Distributed Sys-
tems," Proceeding of Specifications of Reliable Software, pp. 150-161,
IEEE Computer Society Press, April 3-5, 1979.

Software Engineering Technical Committee of the IEEE Computer Society
Press, IEEE Guide to Software Requirement. Specifications, IEEE Com-
puter Society Press, New York, NY 10017, 1984.

Standish, Thomas A. and Richard N. Taylor, "Arcturus: A Prototype Advanced
Ada Programming Environment," Proceeding. ACM Sigsof niSigplan
Software Engineering Symposium, pp. 57-64, ACM, Pittsburgh, PA, April
23-25, 1984.

Stephens, Sharon A. and Leonard L. Tripp, "Requirements Expression and
Verification Aid " Software Engineering, 1078.

Stone, A., D. Hartschuh, and B. Castor, SREM Evaluation, Rome Air Develop-
ment Center, February 1984.

Studer, R., "Using VDM for the Development of Interactive Application Sys-
tems," in Requirements Engineering Environments, ed. Y. Ohno, pp. 13-
22, North-Holland Publishing Company, 1982.

Swann, T.G., "Requirements Decomposition and Other Myths," Proceedings
from AGARD Conference CP-330 (Software for Avionics), September 6-10,..
1982.

B-li

°. . . . . . . . --



.0

NTaylor, Bruce, "Say What You Mean with a Language for Software
Data Communication, pp. 131-143, March 1982.

* Teichroew, Daniel, Ernest A. Hershey Ill, and Michael J. Bastarache, An Intro-
duction to PSL/PSA ,ISDOS Project -University of Michigan, March
1974.

Tse, T. H. and L. Pong, "A Review of System Development Systems," The
Australian Computer Journal, vol. 14, no. 3, August 1982.

Walter, Claudio, "Control Software Specification and Design: An Overview,"
Computer, February 1084.

"14Wartik, Steven and Arthur Pyster, "The 'Diversion' Concept in Interactive
Computer System Specifications ," Proceedings of COMPSAC '83, Chi-
cago, Ill., November 7-11, 1983.

Wasserman, Anthony I. and Susan K. Stinson, "A Specification Method for In-
teractive Programs," Proceedings of Specifications of Reliable Software,
pp. 68-79, IEEE Computer Society Press, April 3-5, 1979.

Wasserman, Anthony I., "The User Software Engineering Methodology: an
Overview," in Information System Desigr Methodologies -- A Comparative
Review, ed. A.A. Verrign-Stuart, North Holland Publishing Company,
1982.

Wasserman, Anthony I. and Steven Gutz, "The Future of Programming," Com-
munications of the ACM, pp. 196-206, March 1982.

Witt, Bernard I., "Communicating Modules: A Software Design Model for Con-
current Distributed Systems," Computer, vol. 18, no. 1, pp. 67-77, IEEE
Computer Society Press, January 1985.

Yamano, Yoichi and Yoshiharu Matsumoto, "Unified Functional Design Tech-
nique Based on Data Flow Concept ," Proceedings of COMPSAC '81, No-
vember 16-20, 1081.

Yau, S.S. and M.U. Caglayan, "Distributed Software System Design Represen-
tation Using Modified Petri Nets," Transactions on Software Engineering,
vol. SE-9, no. 6, pp. 733-745, IEEE Computer Society Press, November
1983.

Yeh, Raymond T. and Pamela Zave, "Specifying Software Requirements,"
Proceedings of the IEEE, vol. 68, no. 9, September 1980.

B- 12
.' - .,. ...... *...... -... --..- ... ,.--...._--.-..-.

. . . . . . .. . . . . . . . . . .. . . . .



Yeh, Raymond T., "Requirements Analysis - A Management Perspective," . .*

Proceedings of COMPSAC '82, pp. 410-416, IEEE Computer Society Press, v
Chicago, MI., November 8-12, 1982.

Zajonc, Peter C. and Kevin J. McGowan, Proto-cyeling: A New Method for Ap-
plication Development -Using Fourth Generation Languages, IEEE publica-
tion CH1QIO-O/83/OOOO/0127.

Zave, Pamela, "An Operational Approach to Requirements Specification for 3
Embedded Systems," IEEE Transactions on Software Engineering, vol.
SE-8, no. 3, May 1982.

4 Zsve, Pamela, "Operational Specification Languages," Proceedings ACM '83,
October 1083.

Zpave, Pamela, "An Overview of the PAISLey Project-1984," (SEN) ACM Sig-
soft Software Engineering Notes, pp. 12-19, July 1984.

* ~Zelkowitz, Marvin V. and James Lyle, "Implementation of Program .-

Specifications ,"Proceedings of COMPSAC '80, Chicago, MI., October 27-......

B- 13



I APPENDIX A

Standard Description Formats

A-1

. . .. . . .



A.1 Methodology Description Format

1. General Aspects

A. Identification

Gives the name and acronym of the methodology and identifies
the developing/supporting organization.

B. Overview

Contains a short description of the salient features of the metho- ,._dology.

C. Identifies the specification life cycle phases supported:

Requirements Analysis, Architectural Design (intermodule com-
munication, data structures), or Detailed Design (module func-
tionality).

Complementary methodologies will be listed for phases not sup-
ported. *

A-2

. . - . _



D. Software Categories

Lists standard software categories which are compatible with this
.4, ~~~methodology. ________

Category Category

1 Arithmetic-based 2 Event Control

3 Process Control 4 Procedure Control

5 Navigatio 8 Flight Dynamics

7 Orbital Dynamics 8 Message Processing

g Diagnostic S/W 10 Sensor/signal Processing

11 Simulation 12 Database Management

13 Data acquisition 14 Decision/planning aids

15 Data presentation 186 Pattern/image processing

17 Computer System Software 18 S/W development tools

E. Suitable for systems of size:

- Small (<2,000 lines of code)

- Medium (2,000 - 10,000 lines of code)

- Large (>10,000 lines of code)

2. Technical Aspects o -

A. Primary approach

For a requirements methodology, the approaches are:

-flow-oriented,

-object-oriented, and

-. state-oriented. - ..

For a design methodology, the approaches are:

A-3

. .o . . .. ..-. "-."-.""-"-. .



- data-structured,

- decompositira,

- encapsulation, and

- programming calculus.

B. Supports _______________

Traceability
Functional hierarchy/decomposition
Data hierarchy/data abstraction
Interface definition
Database definition

Data flow
Sequential control flow
Concurrency /parallelism
Formal program verification
Iterative development

C. Workproducts

Are they relevant to MILSTD documentation?

a. Textual

Descriptions of reports, documents produced. _____

b. Graphical

Descriptions of diagrams produced.

D. Performance Specification

Does the methodology have the capability to specify or test tim-
ing and/or accuracy constraints that apply to individual system
functions?

A-4



E. Operating Qualities Specification

Does the methodology have the capability to specify the following
constraints? %

-Man/machine interaction

~Fault-tolerance

4- Portability

-Reusabiity

-Security

F. Ada compatibility
Ada Feature Supported

Packages_______

Tasks ____

Generics
Exception Handling ____

Types______
Reiresentations ______

X indicates support of feature.
C indicates conflict with feature.

G. Quality Assurance

How does the methodology check or enforce:

- Consistency ?

- Completeness ?

- Validation ?

H. Independent of

Are the resulting specifications independent of:

A-5



WP~~M ~ ~. ~7 2'A.i .' .. .. '~L1 ~. C 4 . ~.- . ~ .2: V - -7 7 7-d:-: . . ~ -

-N

- Implementation Language?

- Hardware Architecture?

-Operating System Architecture?

3. Support Aspects 1

A. Automated Toole

Describes which automated tools are available.

IB. Language

Identifies the language used in the following specification phases
and its degree of formality.

S - Requirements Specification

-Architectural Design

-Detailed Design

4. Management Aspects

Does the methodology support project, technical, or configuration
management? H-ow?

5. Usage Aspects

A. Equipment/Facilities Needed to use

Identify specific hardware and software (operating systems, graph-
ics packages) required to use the methodology or associated
automated tools.

B. Usability

A-6



Level _________ Methodology

C. Extent of Use

Is the methodology mature? Has it been used outside the develop-
ing organization? How much?

6. Transferability

A. Availability

Is the methodology in the public domain, commercially available,
etc.?

B. Training Available

-Public documentation

-Proprietary documentation

-Consultants

-Seminars - scheduling and cost, if known

C. Training and Experience Required
_______ Training/Experience Needed

months JUSER IMANAGER ___________O

1-3 __ H____ _____ _

The table entries reflect the amount of training and experience
time required to use the inethodology effectively. A USER is an
individual who develops or assists in developing requirements
and/or design specifications. An ORGANIZATION is a group of
users developing specifications as a team.

A-7



D.Primary Soreof Document ation ~*..

List references.

A-8



7~y -J 1.

A.2 Tool Set Description Format ,-'w

1. General Aspects

A. Identification

Gives the name and acronym of the tool or tool set and identifies
the developing/supporting organization.

B. Met-hodologies

Lists what methodology the tool set supports.

C. Life cycle phases supported:-

Identifies which of the specification phases the tool set supports:

- requirements analysis . -7 - _AL

- architectural design (intermodule communication, data struc-
tures)

- detailed design (module functionality)

A-9-,--

O". .



D. Software Categories

Lists standard software categories which are compatible with this
methodology. ..-"

# Category * Category - 0
I Arithmetic-based 2 Event Control

3 Process Control 4 Procedure Control

5 Navigation S Flight Dynamics

7 Orbital Dynamics 8 Message Processing

9 Diagnostic S/W 10 Sensor/signal Processing

11 Simulation 12 Database Management

13 Data acquisition 14 Decision/planning aids

15 Data presentation 16 Pattern/image processing

17 Computer System Software 18 S/W development tools

E. Suitable for systems of size:

- Small (<2,000 lines of code) ?

- Medium (2,000 - 10,000 lines of code) ? S

- Large (>10,000 lines of code)! - -

2. Technical Aspects

A. Supports

a *. *. . . . . . . . . . . . . . .-.

A-1 i

o° o " . .*- -. u .' °. -* -q • .o °.. , * ' .° . ae . .- ,- '° ,* . ° 'o " -. - " .° " " °" -" °• °_ " , , • - . . . • - •, - -.- . . . A.



Traceability
Functional hierarchy /decomposition
Data hierarchy/data abstraction
Interface definition
Database definition

Data flow

A0-

Sequential control flow
Concurrency /parallelism
Formal program verification
Iterative development

B. Workproducte -

Are they relevant to MIL-STD documentation?

a. Textual .. ... .

Description of reports, documents produced.

b. Graphical

Description of diagrams produced. A

C. Performance Specification

Does the tool set have the capability to specify or test timing
and/or accuracy constraints that apply to individual system func-
tions?2

D. Operating Qualities Specification

Does the tool set have the capability to specify the following con-
straints?

Man/machine interaction

Fault-tolerance

A-11

Dataasedefiitin !'; "; i ;i91

......................................



Ada~~~ Feaur Supote

Tasks

Exeto Portability

RepReseatatity

F. QultSury e

How Ades Featolseuppreupre

b oilTanss checking_

c.epio Haiainb andalin or_____ co ptrpoese rcdr

d. Rai p eg __________?

Doesi X indtaty e th upprtofache feae h ofwr
C ulraiondscat tes fnct inlt oit the syeteue.

H ow i d exein s the tosesu pototp utbefrperlae

c. Validranc vyaiainua of compucterpessedpciedure?

A-1



A. Degree of Integration

Vertical - within one phase of the software lire cycle? Or horizon-
tal - across more than one phase of the software life cycle?

B. Language

Identifies language(s) used for specification phases and its degree
of formality.

-Requirements Specification

-Architectural DesignA

-Detailed Design

4. Management Aspects

Does the tool set support project, technical, or configuration manage-

ment? How?

.. Usage Aspects

A. Equipmednt/Falities Needed to use

Identify specific hardware and software (operating systems, graph-
ics packages) required to use the tool set or associated automated
tools.

B. Usabiity.
Level Methodolg

Easy to Use or
Moderately Easy to Use _____

Moderately Difficult to Use-"
Difficult to Use _______

C. Extent of Use

Has the tool set b~een used outside the developing c rganization'
How much'

A-1 3

p -. mn*.pe- . .. --...-

SD .~ * ~ .*.*..'*. *.'.. * -S -,



6. Transferability

A. Availability

Is the tool set in the public domain, commercially available, etc.?

B. Training Available

- Public documentation

- Proprietary documentation

- ConsultantsA

- Seminars - scheduling and cost, if known

C. Training and Experience Required

_______Training/Experience Needed
months USER MNGER ORGANIZATION

The table entries reflect the amount of training and experience
time required to use the tool set effectively. A USER is an indivi-
dual who develops or assists in developing requirements and/or
design specifications. An ORGANIZATION is a group of users
developing specifications as a team.

A-14



'V

0
~ -r . r

I

APPENDIX B *

CAPABILiTY RATINGS

A

S

S

.4

0

13-1

~~0~~



Interpretations of Capability Ratings- .
Scale runs from 1 to 3, with 3 indicating best support and 1 indicating least.

STATE MODELING - Representation in diagrammatic form of the system
state and transformations to the state resulting from inputs or other stimuli.

3 Use of transition diagrams as primary technique for description of
requirements.

2 Use of transition diagrams as secondary technique.
I State indirectly encapsulated by an abstraction (process or data).

DATA FLOW MODELING - Representation of the flow of information objects 0 .
between various processing elements and/or storage elements.

3 Use of data flow diagrams as primary technique for description of
requirements.
2 Use of data flow diagrams as secondary technique.
1 Inputs/outputs indicated on diagrams.

CONTROL FLOW MODELING - Representation of the sequence in which pro-
cessing will take place.

3 Use of control flow diagrams as primary technique for description of * A
requirements.
2 Use of control flow diagrams as secondary technique.

1 Flow of control implied in diagram (such as transition diagrams).

OBJECT MODELING - Representation of data or processes as independent .- .
objects with their own state information and capacity to change.

3 Use of process or data abstractions as primary technique for descrip-
tion of requirements.

2 Use of process or data abstractions as secondary technique.
1 Use of Entity-Relationship diagrams as secondary technique for *
modeling software system.

TIMING SPECIFICATION - Statement of the timing constraint for a particu-
lar processing step.

3 Have capability to formally specify and measure timing constraints.
2 Have capability to formally specify but not measure timing con-
straints.

B-2

. .. - . -.

. . . .. . . . . . . ."_ L . . ' " " . . . *.



I Can associate timing constraint with a processing step as a com- 0
ment added to a diagram or textual specification.

ACCURACY SPECIFICATION - Statement of the accuracy constraint for a
particular processing step,

3 Have capability to formally specify and measure accuracy con- .
straints.
2 Have capability to formally specify but not measure accuracy con-
straints.

1 Can associate accuracy constraint with a processing step as a com-
ment added to a diagram or textual specification. .

FUNCTIONAL DECOMPOSITION - A function at one level L- actua ly com-

posed of several interconnected functions that exist as a level of greater detail. -

3 Primary mechanism for design structuring is functional decomposi- .
tion.

2 Secondary mechanism for design structuring is functional decompo- " "
sition.
1 Structure charts of design drawn.

DATA DECOMPOSITION - A set of data at one level is actually composed of
several interconnected pieces of data that exist as a level of greater detail.

3 Primary mechanism for design structuring ja data decomposition.

2 Secondary mechanism for design structuring is data decomposition.

I Data dictionary is maintained.

CONTROL DECOMPOSITION - The flow of control at one level is actually ... :.
composed of several interconnected control flows that exist as a level of greater
detail.

3 Primary mechanism for design structuring is control decomposition.

2 Secondary mechanism for design structuring is control decomposi-
tion.
I Calling tree is maintained.

DATA ABSTRACTION - The concept of hiding information about the imple- .

mentation of a data object and providing a set of implementation-independent

B-3

. • -°. ° • . -°. -

: .. : ,'.,%' ,., : . ..- ,. -,-::_':': ., ," L,'''_. .. <:':'.-, :k-.'X'_ '_'_.:X: . ". " :.A.2.-." <. .** .w ",'. °L '2 -*.'-.-**: :-_



functions for use of the data object.

3 Primary mechanism for design structuring is data abstraction.

2 Secondary mechanism for design structuring is data abstraction. '.-"Z

1 Principle of information hiding is one consideration during design. . .... ,-*-

PROCESS ABSTRACTION - The concept of hiding information about the
implementation of a process object and providing a set of implementation-
independent functions for use of the process object.

3 Primary mechanism for design structuring is process abstraction.
2 Secondary mechanism for design structuring is process abstraction.

1 Principle of information hiding is one consideration during design.

DATABASE DEFINITION - The process of defining the data objects and their
relationships as a data model or semantic hierarchy.

3 A database design per ae is one part of the design process. -.* "

2 Data objects are defined as abstract data types.

1 The valid ranges and formats for data objects axe defined.

CONCURRENCY/SYNCHRONICITY - Processing can be defined as separate
sequential streams concurrently in execution.

3 Concurrent sequential cooperating processes with explicit synchroni-
zation specified.

2 Concurrent sequential cooperating processes without explicit syn-
chronization specified. 4

1 Specification of concurrency within a code unit.

MODULE INTERFACE SPECIFICATION - The concept of having distinct
and well-defined boundaries between processes or sets of data. The inputs, out-
puts, calling mechanism, and pre-conditions for use can be specified. 0 "

3 Specify inputs, outputs, mechanism, and pre-conditions with a for-
mal notation. Consistency checks computer-processed.

2 Specify inputs, outputs, and mechaniLsm with a formal notation.
Consistency checks computer-processed.

1 Specify inputs, outputs, and mechanism with an informal notation. . _

Consistency checks manually-processed.

B-4

-AIL-

(............................................
..............................................



U LiiL - . LI I 1 I 1111 I- .-.. o..-...... -

FORMAL VERIFICATION - The process of proving that the formalization of
the processing abstraction exhibits the desired behavior.

3 A theorem prover is provided to assist the verification process.

2 The specification is formal, and can be verified manually.

1 Justification is provided as narrative text.

and/or its tools provides for organization, tracking, and maintenance of the

emerging workproducts, including control of releases and multiple versions.

3 Automated support for organization, tracking, and maintenance of
workproducts.

2 Partial automated support for organization, tracking, and mainte-
nance of workproducts.
1 Version control alone is provided.

COMPLETENESS ANALYSIS
3 Computer-assistance for completeness analysis provided, syntax and
simulated or symbolic execution (flow analysis) are checked.

2 Computer-assistance for syntax checks.

1 Completeness checked by manual procedures (author/reader; walk- A

throughs).

CONSISTENCY ANALYSIS
3 Computer-assistance for consistency analysis provided, syntax and
simulated or symbolic execution (flow analysis) are checked.
2 Computer-assistance for syntax checks.

I Consistency checked by manual procedures (author/reader; walk-
throughs).

ADA COMPATIBILITY - The methodology can produce a design that can be
implemented in ADA, making use of its principal features.

3 All of the principal features (packages, tasks, generics, exception
handling, types, and representations) can be utilized.

2 Some of the principal features (packages, tasks, generics, exception
handling, types, and representations) can be utilized. There are not
any conflicts between Ada features and the methodology.

B-5

. . . . . .. . . . . . . ..

-'.'- .'.' " . 'Z, ... '... .. .'.".,'" " .-.. "". . ." ". -" " "." " ." .. - . - . .. ' .". . ."• - " . - .3



handling, types, and representations) can be utilized. There are
conflicts between the methodoloy and and at least one Ada feature
and some other incompatibilities may exist.

CODE BEHAVIOR NOTATION - The notation used for describing the internal'I logic or behavior of a unit of code.
3 The syntax of the notation is formal and can be checked by a com-
puter process. (Pseudocode pdl or formal graphic pdl).
2 The behavior is specified with a structured or rigourous natural
language (English) which may include control constructs such as do ...

while...

I The behavior is specified with totally free natural language
(English).

PROTOTYPING- Simulating the behavior of a system by symbolic or simu-
lated execution.

3 The simulation provides sufficient functionality and efficiency to be
used as a pre-release.

2 The simulation mimics all the functionality of the system.

1 The simulation mimics part of the functionality of the system, such
as report formats or interactive dialogue.

TEST PLAN GENERATION - Formulation of a plan and a series of tests to
validate the functionality and efficiency of the implemented system.

3 Automated support for test plan generation is provided.

2 Manual procedures and guidelines for test plan generation are pro-
vided.
1 The methodology recommends that test plans be formulated.

- AUTOMATED TOOLS AVAILABLE
3 The automated tools support the entire methodology process.

2 (Not Defined.)

1 The automated tools support part of the process.

TRACEABILITY The ability to trace requirements through to design ele-
ments realizing them.

B-6

-h ua tomiisprofteuntnatyf the.. . .. . .sytm suh.... ...: '

. . . . . .. . . . . . . . . . . . . . . ..iv diaou.. . . .... .-. .-... ...-

TEST.......N.RATION.......l.tio of .pla and -a e ftsst --- :

P.. t-Vs . *. ,



3 Automated support/enforcement for traceability is provided.

2 Manual procedures for traceability are provided.

I Manual traces are possible.

TRANSITION BETWEEN PHASES
3 A computer-processable project database is available.

2 A data dictionary is maintained.

1 The methodology spans more than one phase of the software lifecy-
cle.

VALIDATION - The process of verifying that the abstract representation of the
system (requirements specification, design specification) does provide all the sys-
tem functionality in the form desired by the customer.

3 Some form of sinmulated executiun ' yubolik or simulation) of the
system is possible. A
2 Structured walkthroughs are performed, possibly with the
customer/user.

1 An author/reader cycle for specifications is followed.

USABILITY - Ease of use.

3 Easy to use.

2 Moderately easy to use.

1 Moderately difficult to use.

MATURITY - Extent of use of the methodology.

3 In use outside the developing organization more than five years.

2 In use outside the developing organization less than five years.

1 Methodology is still evolving.

TRAINING/EXPERIENCE LEVEL - Measure of how much experience and
training is needed before a person or project team uses a methodology
effectively.

3Less than one month.
2 One to three months.

. ... ',• ...

B3-7 . -.

":"""" .'. '"'" .." .-" -" "°" .' -:-' '': --"'' "'''.-.'"- ..-''"'- . .''- -."." .'' " . .°: .-''' .' ." " ", . " "' "' -. '" A-.

".-': ." ," ," .' ." ." .' ." : ." ." .",, '. "" .''.".,'" ."". "'..""..''..'', ,''..' .,''..''.,°' .''-,''.-'_. .' .,L:-.-.'" -' •.' ,... " !-,LA. "-..C'- '..'I.



I lMore than three months.

MIL-STD DOCUMENTATION - Conformance to military documentation stan-
dards (MIL,-STD-SDS).

3 Directly generate documentation in MIL,-STD SDS form. V-
2 Workproducts produced follow spirit although not strict form of
MIL-STD SDS documentation.

- 1 Can generate documentation in MIL-STD SDS form from workpro-
ducts produced by methodology.

I-A-

B-8

. .....



TABLE OF METHODOLOGY RATINGS

Capablilty Methodology
__ _ _ _ A B C D E F G H I JK L

REQUIREMENTS
state modeling 0 1 0 2 1 3 1 1 1 1 0 2
data fow modeling 3 0 2 3 0 1 0 0 1 0 2 2

control fow modeling 2 0 3 2 0 1 0 0 0 0 2 2
object modeling 1 3 0 1 3 1 3 3 3 3 3. 0
timing performance spec 0 0 1 1 1 2 0 0 0 3 3 0

accuracy performance spec 0 2 1 0 1 2 2 2 0 3 0 0
DESIGN ,__

functional decomposition 2 0 3 0 2 1 1 2 2 0 0 2
data decomposition 3 0 3 2 1 1 2 2 2 0 2 1
control decomposition 2 0 3 2 0 1 0 0 0 0 2 1-
data abst-action 0 3 0 0 3 0 3 3 3 0 1 3
process absttaction 0 3 0 0 2 0 0 0 3 3 1 2

data base definition 1 2 0 3 1 3 2 2 2 0 3f-

concurrency/synchronicity 1 0 0 1 2 1 2 3 1 3 3 0

module interface definition 1 3 0 1 1 2 2 2 1 3 3 3
formal verification 0 3' 0 0 0 2 1 1 0 0 0 3
configuration management 0 0 0 0 0 0 0 0 0 0 0 2
completeness analysis 1 3 1 1 1 3 1 1 3 3 ,

consistency analysis 1 3 1 1 1 3 1 3 1 3 3 3

Ada compatibility 1 2 2 1 3 2 1 3 1 2 2 2

code behavior notasion 0 3 0 3 2 33 3  2  3 0 1 3

UNIVERS.-L
prototyping 0 0 0 L 0 2 0 2 0 3 0 2

test plan generation 0- 0 0 0 0 0 0 3 0 0 2 0
automated tool available 1 3 3 3 0 3 0 3 0 3 3 3
traceability 0 3 1 1 1 3 1 3 1 0 3 0
transistion between phases 1 3 1 2 1 3 1 3 1 0 3 2

validation 2 3 1 1 2 3 1 3 2 3 3 2
usability 2 1 1 2 3 1 1 1 2 1 1 2 _ --

maturity 3 3 3 3 2 3 2 1 2 2 2 2

training/experience level _ 1
MIL-STD documentation 1 0 1 1 2 2 0 1 1 0 2 1 -""

Figure B-1: Methodology Capabilities Ratings



Attachment 2

Changes to Draft of Specification Technology Final Report
- per phone conference on May 3,1985I - and phone conference on May 6,1085

N.Location Chan ge/Cormment

Sec 1.1, para 2 Replace last sen-
tence and footnote
with 'This situation
has been further
complicated with
the introduction of
the Ada program-
ming language.
Users must under-
stand which of the
methods and tech-......
niques result in
designs that take
maximum advan-
tage of the softw: re
engineeritg princi-
pies which Ada
directly supports
and implements'.

2 see 1.2, para 2 Thisert 'of the guide-
!ook' after 'A
ibrough F".

3 sec 1.2, para 4 Rmove typo 'a'
fron bfre 'metho-

dologies' in 1st sen-0
tence.

4 sec 1.2, para 7 Ciarify meaving of
data base mnanage-

S raent. Possibly
ctang( ".-pab ih-
ties' to FTcres'
or 'Fac, 1ities

AT-I



No. Location Change/Comment

5 figure 1-1 Make figure con-
sistent with text in __....__•

see 1.4, 2nd para
items a-e.

6 sec 1.4, para 2 Remove typo of 'to'
in item e.

7 sec 1.4, para 8 Add 'which direct
the use of
specification tech-
nologies in the
development of Air .
Force system' to
end of sentence.

8 sec 1.4, para 9 Add '(figure 1-3)'
after '18 generic
software categories.

9 sec 2.1, para 1 Ins. rt 'system' after
'These' in 2nd sen-
tence.

10 sec 2.1,para 3 Add 'taken' after
'approach' in 3rd
sentence.

11 sec 2.2.2.1 -Amplify meaning of
item 1.

12 sec 2.2.2.1 Repiace 'by Space'
with 'of Space' in
item 2.

13 sec 3.2 Replace example of
problem with
-oreign me~hodol,-
gies with clause
'where language
and time barriers
complicate....'

AT- 2

--.

: ;: :'. i ;-i . :i ;-' i :. ;.- :-: .;i - :-i .. " ( ; "' -: ' '-: "" " " -" " .' ..



No. Location Change/Comment

14 sec 4.2 Make changes in

text so inverse pro- .
portions are
explained as direct
proportions.

15 see 4.2, item 8 Expand and clarify
meaing of correct-
hesS.

* 16 see 4.4, para 2 Change 'chose' to
'choose' in first sen- O
tence.

' 17 sec 5, para 2 Change 'original
proposal design' to
'design originally A
proposed'.

* 18 see 5, para 6 Insert 'Air Force
Mission' in fron. of
appendices in fist P,
sentence.

19 see 6, para 2 Add 'of the guide-
book' after 'Appen- -

dix C'.

* 20 see 6, para 2 Second sentence
needs a verb.

21 see 7.1, para 3 Add some text
about where ratings

come from. -

AT-.3

.. T -. "..:;.:: -:

,~ .. '-. . . . . . . . ...'--. ";':i::;;;::;-:::;:;;:-;;:; - ; S..;'':; ::;;: ;::'::::.' ::;"';;;: :;;: ;-;: / ::.;" ; :"" "" "" "; " ":';:. .



No. Location C'ange/Comment

22 sec 7.1, para 4 Make clear that
figures 7-3 & 7-4
ar- used to fill in
desired column of
worksheet and
make some refer-
ence to setting up
of ideal methodol-
ogy.

23 worksheet Change 'Score' on
second sheet to S
'MS'.

21 sec 7.1, para 7 Explain that third
path is scored by
user.

25 see 7.1, eqn Explain that MS
stands for Metho-
dology Score.

26 sec 7.1, para 8 Add 'nominally'
before 'desired' in
last 2 sentences.

27 sec 7.1,para 8 Put in rationale for O
formulas and paths.

28 sec 7.2, para 2 Put in pointer to
Appendix 13 on
item 2. _

2P Appendix A, Update same as.
guidebook version
is updated.

A-T -

• S -



MISSION
Of

Rum Air Development Center
RAVC p~ans and executez &e~eap-ch, deve>Lopment, te~-t
and ze2ected acquiZition p/to g'amz in 4uppott o6

* Command, Cont'toZ, Commu~nication6 and inte&~Zgene
zappott within atea4 o6 competence -b p'tov-ded -to
ESV Ptog;Lar O66ice. (PO.6) and o-thet ESV etemeiit
-to petjohrn e66ective acqui.6ition o6 C3 1 6sy~tem.
The a'tea o6 tec~hntcaZ competence inceude
co;nmunica-tions, command and con-ttot, battZe

*managemnent, in6o'trnaton ptoceszing, 'w'Lveittancej6no6 i nteUigene da-ta cottection and handting,
~sc'Zd sta-te sciences, e.Lectomagnetc.6, alid
pPtopagation, and eZect/tonic, main-tainabZi~t,
and cor'patibZZ&tq.



FILMED .4.

&86

DTIC


